3,728 research outputs found
Synthesis of solvent-modified epoxies via Chemically Induced Phase Separation: A new approach towards void toughening of epoxies
Summary: The fracture toughness has been investigated with single edge notched bending specimens in solvent-modified epoxies, which were prepared via the Chemically Induced Phase Separation technique. The generation of a controlled morphology with liquid droplets in the micrometer range leads to a substantial increase in the fracture energy of nearly 400% compared to the non-modified epoxy network. The critical stress intensity factor of these highly crosslinked thermosets does not vary significantly. These results demonstrate the general potential of the Chemically Induced Phase Separation technique to prepare porous thermosets, thus combining increased toughness with lowered densit
Internal erosion of granular materials – Identification of erodible fine particles as a basis for numerical calculations
In geohydromechanics internal erosion is a process which is still hardly to be quantified both spatially as well as temporally. The transport of fine particles, which is caused by increased hydraulic gradients, is influenced by the pore structure of the coarse grained fabric. The microstructural information of the pore constriction size distribution (CSD) of the solid skeleton has therefore to be taken into account when internal erosion is analyzed either analytically or numerically. The CSD geometrically defines the amount of fine particles, which potentially can be eroded away for a given hydraulic force. The contribution introduces experimental and numerical calculations which aim at the quantification of the amount of erodible fines. Based on this approach a multiphase continuum-based numerical model is used to back calculate the process of internal erosion for one material of the well-known experimental investigation of Skempton & Brogan (1994)[1]
On time and the quantum-to-classical transition in Jordan-Brans-Dicke quantum gravity
Any quantum theory of gravity which treats the gravitational constant as a
dynamical variable has to address the issue of superpositions of states
corresponding to different eigenvalues. We show how the unobservability of such
superpositions can be explained through the interaction with other
gravitational degrees of freedom (decoherence). The formal framework is
canonically quantized Jordan-Brans-Dicke theory. We discuss the concepts of
intrinsic time and semiclassical time as well as the possibility of tunneling
into regions corresponding to a negative gravitational constant. We calculate
the reduced density matrix of the Jordan-Brans-Dicke field and show that the
off-diagonal elements can be sufficiently suppressed to be consistent with
experiments. The possible relevance of this mechanism for structure formation
in extended inflation is briefly discussed.Comment: 10 pages, Latex, ZU-TH 15/93, BUTP-93/1
External magnetic field effects on a distorted kagome antiferromagnet
We report bulk magnetization, and elastic and inelastic neutron scattering
measurements under an external magnetic field, , on the weakly coupled
distorted kagome system, Cu_{2}(OD)_3Cl. Our results show that the ordered
state below 6.7 K is a canted antiferromagnet and consists of large
antiferromagnetic -components and smaller ferromagnetic -components. By
first-principle calculations and linear spin wave analysis, we present a simple
spin hamiltonian with non-uniform nearest neighbor exchange interactions
resulting in a system of coupled spin trimers with a single-ion anisotropy that
can qualitatively reproduce the spin dynamics of Cu_{2}(OD)_3Cl.Comment: 5 figure
Quantum cosmology with big-brake singularity
We investigate a cosmological model with a big-brake singularity in the
future: while the first time derivative of the scale factor goes to zero, its
second time derivative tends to minus infinity. Although we also discuss the
classical version of the model in some detail, our main interest lies in its
quantization. We formulate the Wheeler-DeWitt equation and derive solutions
describing wave packets. We show that all such solutions vanish in the region
of the classical singularity, a behaviour which we interpret as singularity
avoidance. We then discuss the same situation in loop quantum cosmology. While
this leads to a different factor ordering, the singularity is there avoided,
too.Comment: 24 pages, 7 figures, figures improved, references added, conceptual
clarifications include
Semiclassical states for quantum cosmology
In a metric variable based Hamiltonian quantization, we give a prescription
for constructing semiclassical matter-geometry states for homogeneous and
isotropic cosmological models. These "collective" states arise as infinite
linear combinations of fundamental excitations in an unconventional "polymer"
quantization. They satisfy a number of properties characteristic of
semiclassicality, such as peaking on classical phase space configurations. We
describe how these states can be used to determine quantum corrections to the
classical evolution equations, and to compute the initial state of the universe
by a backward time evolution.Comment: 13 page
Ultrasound mapping of lymph node and subcutaneous metastases in patients with cutaneous melanoma: Results of a prospective multicenter study
Background: Ultrasound (sonography, B-mode sonography, ultrasonography) examination improves the sensitivity in more than 25% compared to the clinical palpation, especially after surgery on the regional lymph node area. Objective: To evaluate the distribution of metastases during follow-up in the draining lymph node areas from the scar of primary to regional lymph nodes ( head and neck, supraclavicular, axilla, infraclavicular, groin) in patients with cutaneous melanoma with or without sentinel lymph node biopsy (SLNB) or former elective or consecutive complete lymph node dissection in case of positive sentinel lymph node (CLND). Methods: Prospective multicenter study of the Departments of Dermatology of the Universities of Homburg/Saar, Tubingen and Munich (Germany) in which the distribution of lymph node and subcutaneous metastases were mapped from the scar of primary to the lymphatic drainage region in 53 melanoma patients ( 23 women, 30 men; median age: 64 years; median tumor thickness: 1.99 mm) with known primary, visible lymph nodes or subcutaneous metastases proven by ultrasound and histopathology during the follow-up. Results: Especially in the axilla, infraclavicular region and groin the metastases were not limited to the anatomic lymph node regions. In 5 patients (9.4%) ( 4 of them were in stage IV) lymph node metastases were not located in the corresponding lymph node area. 32 patients without former SLNB had a time range between melanoma excision and lymph node metastases of 31 months ( median), 21 patients with SLNB had 18 months ( p < 0.005). In 11 patients with positive SLNB the time range was 17 months, in 10 patients with negative SLNB 21 months ( p < 0.005); in 32 patients with CLND the time range was 31 m< 0.005). In thinner melanomas lymph node metastases occurred later ( p < 0.05). Conclusions: After surgery of cutaneous melanoma, SLNB and CLND the lymphatic drainage can show significant changes which should be considered in clinical and ultrasound follow-up examinations. Especially for high-risk melanoma patients follow-up examinations should be performed at intervals of 3 months in the first years. Patients at stage IV should be examined in all regional lymph node areas clinically and by ultrasound. Copyright (c) 2006 S. Karger AG, Basel
New Asymptotic Expanstion Method for the Wheeler-DeWitt Equation
A new asymptotic expansion method is developed to separate the Wheeler-DeWitt
equation into the time-dependent Schr\"{o}dinger equation for a matter field
and the Einstein-Hamilton-Jacobi equation for the gravitational field including
the quantum back-reaction of the matter field. In particular, the nonadiabatic
basis of the generalized invariant for the matter field Hamiltonian separates
the Wheeler-DeWitt equation completely in the asymptotic limit of
approaching infinity. The higher order quantum corrections of the gravity to
the matter field are found. The new asymptotic expansion method is valid
throughout all regions of superspace compared with other expansion methods with
a certain limited region of validity. We apply the new asymptotic expansion
method to the minimal FRW universe.Comment: 24 pages of Latex file, revte
Evidence for charged critical behavior in the pyrochlore superconductor RbOs2O6
We analyze magnetic penetration depth data of the recently discovered
superconducting pyrochlore oxide RbOs2O6. Our results strongly suggest that in
RbOs2O6 charged critical fuctuations dominate the temperature dependence of the
magnetic penetration depth near Tc. This is in contrast to the mean-field
behavior observed in conventional superconductors and the uncharged critical
behavior found in nearly optimally doped cuprate superconductors. However, this
finding agrees with the theoretical predictions for charged criticality and the
charged criticality observed in underdoped YBa2Cu3O6.59.Comment: 5 pages, 4 figure
- …