5 research outputs found

    Patterns of microbial processes shaped by parent material and soil depth in tropical rainforest soils

    No full text
    Microbial processes are one of the key factors driving carbon (C) and nutrient cycling in terrestrial ecosystems, and are strongly driven by the equilibrium between resource availability and demand. In deeply weathered tropical rainforest soils of Africa, it remains unclear whether patterns of microbial processes differ between soils developed from geochemically contrasting parent materials. Here we show that resource availability across soil depths and regions from mafic to felsic geochemistry shape patterns of soil microbial processes. During a 120-day incubation experiment, we found that microbial biomass C and extracellular enzyme activity were highest in the mafic region. Microbial C limitation was highest in the mixed sedimentary region and lowest in the felsic region, which we propose is related to the strength of contrasting C stabilization mechanisms and varying C quality. None of the investigated regions and soil depths showed signs of nitrogen (N) limitation for microbial processes. Microbial phosphorus (P) limitation increased with soil depth but was similar across geochemical regions, indicating that subsoils in the investigated soils were depleted in rock-derived nutrients and are therefore dependent on efficient biological recycling of nutrients. Microbial C limitation was lowest in subsoils, indicating that subsoil microbes can significantly participate in C cycling and limit C storage if increased oxygen availability is prevalent. Using multivariable regressions, we demonstrate that microbial biomass C normalized to soil organic C content (MBCSOC) is controlled by soil geochemistry and substrate quality, while microbial biomass C normalized to soil weight (MBCSoil) is predominantly driven by resource distribution. We conclude that due to differences in resource availability, microbial processes in deeply weathered tropical rainforest soils greatly vary across geochemical regions which must be considered when assessing soil microbial processes in organic matter turnover models

    Microbial properties in tropical montane forest soils developed from contrasting parent material – An incubation experiment

    No full text
    Background Soil microbes are key drivers of carbon (C) and nutrient cycling in terrestrial ecosystems, and their properties are influenced by the relationship between resource demand and availability. Aims Our objective was to investigate patterns of microbial properties and their controls to understand whether they differ between soils derived from geochemically contrasting parent material in tropical montane forests. Methods We measured microbial biomass C (MBCSoil), potential extracellular enzyme activity (pEEA), and assessed microbial investments in C and nutrient acquisition at the beginning and end of a 120-day laboratory incubation experiment using soils developed from three geochemically contrasting parent material (i.e., mafic, mixed sediment, and felsic) and three soil depths (0–70 cm). Results We found that MBCSoil and pEEA were highest in soils developed from the mafic parent material. Microbial investment in C acquisition was highest in soils developed from mixed sedimentary rocks and lowest in soils developed from the felsic parent material. We propose that our findings are related to the strength of contrasting mineral-related C stabilization mechanisms and varying C quality. No predominant microbial investment in nitrogen (N) acquisition was observed, whereas investment in phosphorus (P) acquisition was highest in subsoils. We found lower microbial investment in C acquisition in subsoils indicating relatively high C availability, and that microbes in subsoils can substantially participate in C cycling and limit C storage if moisture and oxygen conditions are suitable. Geochemical soil properties and substrate quality were important controls on MBCSoil per unit soil organic C (MBCSOC), particularly after the exhaustion of labile and fast cycling C, that is, at the end of the incubation. Conclusion Although a laboratory incubation experiment cannot reflect real-world conditions, it allowed us to understand how soil properties affect microbial properties. We conclude that parent material is an important driver of microbial properties in tropical montane forests despite the advanced weathering degree of soils.ISSN:1436-8730ISSN:0044-3263ISSN:1522-262

    Heterotrophic soil respiration and carbon cycling in geochemically distinct African tropical forest soils

    No full text
    Heterotrophic soil respiration is an important component of the global terrestrial carbon (C) cycle, driven by environmental factors acting from local to continental scales. For tropical Africa, these factors and their interactions remain largely unknown. Here, using samples collected along topographic and geochemical gradients in the East African Rift Valley, we study how soil chemistry and fertility drive soil respiration of soils developed from different parent materials even after many millennia of weathering. To address the drivers of soil respiration, we incubated soils from three regions with contrasting geochemistry (mafic, felsic and mixed sediment) sampled along slope gradients. For three soil depths, we measured the potential maximum heterotrophic respiration under stable environmental conditions and the radiocarbon content (Delta C-14) of the bulk soil and respired CO2. Our study shows that soil fertility conditions are the main determinant of C stability in tropical forest soils. We found that soil microorganisms were able to mineralize soil C from a variety of sources and with variable C quality under laboratory conditions representative of tropical topsoil. However, in the presence of organic carbon sources of poor quality or the presence of strong mineral-related C stabilization, microorganisms tend to discriminate against these energy sources in favour of more accessible forms of soil organic matter, resulting in a slower rate of C cycling. Furthermore, despite similarities in climate and vegetation, soil respiration showed distinct patterns with soil depth and parent material geochemistry. The topographic origin of our samples was not a main determinant of the observed respiration rates and Delta C-14. In situ, however, soil hydrological conditions likely influence soil C stability by inhibiting decomposition in valley subsoils. Our results demonstrate that, even in deeply weathered tropical soils, parent material has a long-lasting effect on soil chemistry that can influence and control microbial activity, the size of subsoil C stocks and the turnover of C in soil. Soil parent material and its control on soil chemistry need to be taken into account to understand and predict C stabilization and rates of C cycling in tropical forest soils.ISSN:2199-3971ISSN:2199-398

    Organic matter cycling along geochemical, geomorphic, and disturbance gradients in forest and cropland of the African Tropics – project TropSOC database version 1.0

    Get PDF
    The African Tropics are hotspots of modern-day land use change and are, at the same time, of great relevance for the cycling of carbon (C) and nutrients between plants, soils, and the atmosphere. However, the consequences of land conversion on biogeochemical cycles are still largely unknown as they are not studied in a landscape context that defines the geomorphic, geochemical, and pedological framework in which biological processes take place. Thus, the response of tropical soils to disturbance by erosion and land conversion is one of the great uncertainties in assessing the carrying capacity of tropical landscapes to grow food for future generations and in predicting greenhouse gas fluxes from soils to the atmosphere and, hence, future earth system dynamics. Here we describe version 1.0 of an open-access database created as part of the project “Tropical soil organic carbon dynamics along erosional disturbance gradients in relation to variability in soil geochemistry and land use” (TropSOC). TropSOC v1.0 (Doetterl et al., 2021, https://doi.org/10.5880/fidgeo.2021.009) contains spatially and temporally explicit data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020 as part of monitoring and sampling campaigns in the eastern Congo Basin and the East African Rift Valley system. The results of several laboratory experiments focusing on soil microbial activity, C cycling, and C stabilization in soils complement the dataset to deliver one of the first landscape-scale datasets to study the linkages and feedbacks between geology, geomorphology, and pedogenesis as controls on biogeochemical cycles in a variety of natural and managed systems in the African Tropics. The hierarchical and interdisciplinary structure of the TropSOC database allows linking of a wide range of parameters and observations on soil and vegetation dynamics along with other supporting information that may also be measured at one or more levels of the hierarchy. TropSOC's data mark a significant contribution to improve our understanding of the fate of biogeochemical cycles in dynamic and diverse tropical African (agro-)ecosystems. TropSOC v1.0 can be accessed through the Supplement provided as part of this paper or as a separate download via the websites of the Congo Biogeochemistry Observatory and GFZ Data Services where version updates to the database will be provided as the project develops.ISSN:1866-3516ISSN:1866-350
    corecore