8 research outputs found
Disruption of the murine major vault protein (MVP/LRP) gene does not induce hypersensitivity to cytostatics
Vaults are ribonucleoprotein particles with a distinct structure and a
high degree of conservation between species. Although no function has been
assigned to the complex yet, there is some evidence for a role of vaults
in multidrug resistance. To confirm a direct relation between vaults and
multidrug resistance, and to investigate other possible functions of
vaults, we have generated a major vault protein (MVP/lung
resistance-related protein) knockout mouse model. The MVP(-/-) mice are
viable, healthy, and show no obvious abnormalities. We investigated the
sensitivity of MVP(-/-) embryonic stem cells and bone marrow cells derived
from the MVP-deficient mice to various cytostatic agents with different
mechanisms of action. Neither the MVP(-/-) embryonic stem cells nor the
MVP(-/-) bone marrow cells showed an increased sensitivity to any of the
drugs examined, as compared with wild-type cells. Furthermore, the
activities of the ABC-transporters P-glycoprotein, multidrug
resistance-associated protein and breast cancer resistance protein were
unaltered on MVP deletion in these cells. In addition, MVP wild-type and
deficient mice were treated with the anthracycline doxorubicin. Both
groups of mice responded similarly to the doxorubicin treatment. Our
results suggest that MVP/vaults are not directly involved in the
resistance to cytostatic agents
Immunoediting role for major vault protein in apoptotic signaling induced by bacterial N-acyl homoserine lactones
The major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Pseudomonas aeruginosa. Here, we report the use of photoactive probes to identify MVP as a target of the N-(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including P. aeruginosa. A treatment of normal and cancer cells with C12 or other N-acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death. Since MVP is the structural core of large particles termed vaults, our findings suggest a mechanism in which MVP vaults act as sentinels that fine-tune inflammation-activated processes such as apoptotic signaling mediated by immunosurveillance cytokines including tumor necrosis factor-related apoptosis inducing ligand (TRAIL).Bio-organic Synthesi
Immunoediting role for major vault protein in apoptotic signaling induced by bacterial N-acyl homoserine lactones
© 2021 National Academy of Sciences. All rights reserved.The major vault protein (MVP) mediates diverse cellular responses, including cancer cell resistance to chemotherapy and protection against inflammatory responses to Pseudomonas aeruginosa. Here, we report the use of photoactive probes to identify MVP as a target of the N-(3-oxo-dodecanoyl) homoserine lactone (C12), a quorum sensing signal of certain proteobacteria including P. aeruginosa. A treatment of normal and cancer cells with C12 or other N-acyl homoserine lactones (AHLs) results in rapid translocation of MVP into lipid raft (LR) membrane fractions. Like AHLs, inflammatory stimuli also induce LR-localization of MVP, but the C12 stimulation reprograms (functionalizes) bioactivity of the plasma membrane by recruiting death receptors, their apoptotic adaptors, and caspase-8 into LR. These functionalized membranes control AHL-induced signaling processes, in that MVP adjusts the protein kinase p38 pathway to attenuate programmed cell death. Since MVP is the structural core of large particles termed vaults, our findings suggest a mechanism in which MVP vaults act as sentinels that fine-tune inflammation-activated processes such as apoptotic signaling mediated by immunosurveillance cytokines including tumor necrosis factor-related apoptosis inducing ligand (TRAIL)
Distribution and Evolution of von Willebrand/Integrin A Domains: Widely Dispersed Domains with Roles in Cell Adhesion and Elsewhere
The von Willebrand A (VWA) domain is a well-studied domain involved in cell adhesion, in extracellular matrix proteins, and in integrin receptors. A number of human diseases arise from mutations in VWA domains. We have analyzed the phylogenetic distribution of this domain and the relationships among ∼500 proteins containing this domain. Although the majority of VWA-containing proteins are extracellular, the most ancient ones, present in all eukaryotes, are all intracellular proteins involved in functions such as transcription, DNA repair, ribosomal and membrane transport, and the proteasome. A common feature seems to be involvement in multiprotein complexes. Subsequent evolution involved deployment of VWA domains by Metazoa in extracellular proteins involved in cell adhesion such as integrin β subunits (all Metazoa). Nematodes and chordates separately expanded their complements of extracellular matrix proteins containing VWA domains, whereas plants expanded their intracellular complement. Chordates developed VWA-containing integrin α subunits, collagens, and other extracellular matrix proteins (e.g., matrilins, cochlin/vitrin, and von Willebrand factor). Consideration of the known properties of VWA domains in integrins and extracellular matrix proteins allows insights into their involvement in protein–protein interactions and the roles of bound divalent cations and conformational changes. These allow inferences about similar functions in novel situations such as protease regulators (e.g., complement factors and trypsin inhibitors) and intracellular proteins (e.g., helicases, chelatases, and copines)