113,679 research outputs found

    Impact of limited solvent capacity on metabolic rate, enzyme activities, and metabolite concentrations of S. cerevisiae glycolysis

    Get PDF
    The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo. © 2008 Vazquez et al

    Ellipsometric measurement of liquid film thickness

    Get PDF
    The immediate objective of this research is to measure liquid film thickness from the two equilibrium phases of a monotectic system in order to estimate the film pressure of each phase. Thus liquid film thicknesses on the inside walls of the prism cell above the liquid level have been measured elliposmetrically for the monotectic system of succinonitrile and water. The thickness varies with temperature and composition of each plane. The preliminary results from both layers at 60 deg angle of incidence show nearly uniform thickness from about 21 to 23 C. The thickness increases with temperature but near 30 C the film appears foggy and scatters the laser beam. As the temperature of the cell is raised beyond room temperature it becomes increasingly difficult to equalize the temperature inside and outside the cell. The fogging may also be an indication that solution, not pure water, is adsorbed onto the substrate. Nevertheless, preliminary results suggest that ellipsometric measurement is feasible and necessary to measure more accurately and rapidly the film thickness and to improve thermal control of the prism walls

    Bioavailable Vitamin D Is More Tightly Linked to Mineral Metabolism than Total Vitamin D in Incident Hemodialysis Patients

    Get PDF
    Prior studies showed conflicting results regarding the association between 25-hydroxyvitamin D (25(OH)D) levels and mineral metabolism in end-stage renal disease. In order to determine whether the bioavailable vitamin D (that fraction not bound to vitamin D binding protein) associates more strongly with measures of mineral metabolism than total levels, we identified 94 patients with previously measured 25(OH)D and 1,25-dihydroxyvitamin D (1,25(OH)2D)(1,25(OH)_2D) from a cohort of incident hemodialysis patients. Vitamin D binding protein was measured from stored serum samples. Bioavailable 25(OH)D and 1,25(OH)2D1,25(OH)_2D were determined using previously validated formulae. Associations with demographic factors and measures of mineral metabolism were examined. When compared with whites, black patients had lower levels of total, but not bioavailable, 25(OH)D. Bioavailable, but not total, 25(OH)D and 1,25(OH)2D1,25(OH)_2D were each significantly correlated with serum calcium. In univariate and multivariate regression analysis, only bioavailable 25(OH)D was significantly associated with parathyroid hormone levels. Hence, bioavailable vitamin D levels are better correlated with measures of mineral metabolism than total levels in patients on hemodialysis
    • …
    corecore