17 research outputs found

    Datasets of whole cell and mitochondrial oxysterols derived from THP-1, SH-SY5Y and human peripheral blood mononuclear cells using targeted metabolomics

    Get PDF
    The raw datasets of oxysterol quantifications from whole cell and mitochondrial fractions of THP-1 monocytes and macrophages, neuronal-like SH-SH5Y cells and human peripheral blood mononuclear cells are presented. Oxysterols were quantified using a new liquid chromatography-mass spectrometry (LC-MS) and multiple reaction monitoring analysis published in the article “A quantitative LC-MS/MS method for analysis of mitochondrial-specific oxysterol metabolism” in Redox Biology [1]. This method showed improved extraction efficiency and recovery of mono and dihydroxycholesterols from cellular matrix. The datasets derived from the three cell lines are included in the appendix. These datasets provide new information about the oxysterol distribution in THP-1 monocytes and macrophages, SH-SY5Y cells and peripheral blood mononuclear cells. These datasets can be used as a guide for oxysterol distribution in the three cell lines for future studies, and can used for future method optimization, and for comparison of oxysterol recovery with other analytical techniques

    Metabolic fluxes for nutritional flexibility of Mycobacterium tuberculosis.

    Get PDF
    The co-catabolism of multiple host-derived carbon substrates is required by Mycobacterium tuberculosis (Mtb) to successfully sustain a tuberculosis infection. However, the metabolic plasticity of this pathogen and the complexity of the metabolic networks present a major obstacle in identifying those nodes most amenable to therapeutic interventions. It is therefore critical that we define the metabolic phenotypes of Mtb in different conditions. We applied metabolic flux analysis using stable isotopes and lipid fingerprinting to investigate the metabolic network of Mtb growing slowly in our steady-state chemostat system. We demonstrate that Mtb efficiently co-metabolises either cholesterol or glycerol, in combination with two-carbon generating substrates without any compartmentalisation of metabolism. We discovered that partitioning of flux between the TCA cycle and the glyoxylate shunt combined with a reversible methyl citrate cycle is the critical metabolic nodes which underlie the nutritional flexibility of Mtb. These findings provide novel insights into the metabolic architecture that affords adaptability of bacteria to divergent carbon substrates and expand our fundamental knowledge about the methyl citrate cycle and the glyoxylate shunt

    Metabolic flux analysis of the nitrogen-fixing bacterium Azorhizobium caulinodans

    No full text
    Symbiotic nitrogen fixation in rhizobial-legume symbioses is important for agriculture and the establishment of a successful symbiosis depends on the metabolic integration of the rhizobia inside the host nodules. This study aims to understand the metabolic adaptations in a rhizobium during nitrogen fixation. The study uses 13C-metabolic flux analysis to derive carbon fluxes across the metabolic network of the model diazotrophic rhizobium, Azorhizobium caulinodans ORS571. The flux maps obtained for aerobic, micro-aerobic and nitrogen-fixing free-living cultures identified these metabolic adjustments as an increase in polyhydroxybutyrate synthesis and tricarboxylic acid cycle fluxes required to sustain growth and metabolism during micro-aerobic nitrogen fixation. Flux maps for bacteroids, isolated from the root and stem nodules of S. rostrata, highlighted reduced tricarboxylic acid cycle fluxes and increased flux through the methyl malonate semialdehyde pathway relative to the free-living N2-fixing cultures. Polyhydroxybutyrate was indispensable for nitrogen fixation and diazotrophic growth in free-living cultures, and for establishment of effective symbiosis with the host, but it was less important for the growth of non-nitrogen fixing free-living cultures under aerobic and micro-aerobic conditions. Deletion of polyhydroxybutyrate under aerobic conditions resulted in slow growth and caused changes in biomass synthesis, mainly affecting lipids and exo-polysaccharide. Under micro-aerobic conditions, deletion of polyhydroxybutyrate also resulted in slow growth and increased fluxes through the tricarboxylic acid cycle, gluconeogenesis, and the pentose phosphate pathway. There was a significant rise in lipid production that potentially substituted for polyhydroxybutyrate and maintained redox balance during micro-aerobic growth. The combined findings from the flux maps highlight the adjustments in central carbon metabolism associated with free-living and symbiotic nitrogen fixation. This knowledge is important for research aimed at improving the existing symbiosis and developing synthetic symbioses between rhizobia and non-legumes, which will reduce dependence on chemical nitrogen fertilizers.</p

    A Current Perspective on the Potential of Nanomedicine for Anti-Tuberculosis Therapy

    No full text
    Tuberculosis (TB) is one of the ten infectious diseases that cause the highest amount of human mortality and morbidity. This infection, which is caused by a single pathogen, Mycobacterium tuberculosis, kills over a million people every year. There is an emerging problem of antimicrobial resistance in TB that needs urgent treatment and management. Tuberculosis treatment is complicated by its complex drug regimen, its lengthy duration and the serious side-effects caused by the drugs required. There are a number of critical issues around drug delivery and subsequent intracellular bacterial clearance. Drugs have a short lifespan in systemic circulation, which limits their activity. Nanomedicine in TB is an emerging research area which offers the potential of effective drug delivery using nanoparticles and a reduction in drug doses and side-effects to improve patient compliance with the treatment and enhance their recovery. Here, we provide a minireview of anti-TB treatment, research progress on nanomedicine and the prospects for future applications in developing innovative therapies

    Localisation of oxysterols at the sub-cellular level and in biological fluids

    Get PDF
    Oxysterols are oxidized derivatives of cholesterol that are formed enzymatically or via reactive oxygen species or both. Cholesterol or oxysterols ingested as food are absorbed and packed into lipoproteins that are taken up by hepatic cells. Within hepatic cells, excess cholesterol is metabolised to form bile acids. The endoplasmic reticulum acts as the main organelle in the bile acid synthesis pathway. Metabolised sterols originating from this pathway are distributed within other organelles and in the cell membrane. The alterations to membrane oxysterol:sterol ratio affects the integrity of the cell membrane. The presence of oxysterols changes membrane fluidity and receptor orientation. It is well documented that hydroxylase enzymes located in mitochondria facilitate oxysterol production via an acidic pathway. More recently, the presence of oxysterols was also reported in lysosomes. Peroxisomal deficiencies favour intracellular oxysterols accumulation. Despite the low abundance of oxysterols compared to cholesterol, the biological actions of oxysterols are numerous and important. Oxysterol levels are implicated in the pathogenesis of multiple diseases ranging from chronic inflammatory diseases (atherosclerosis, Alzheimer’s disease and bowel disease), cancer and numerous neurodegenerative diseases. In this article, we review the distribution of oxysterols in sub-cellular organelles and in biological fluids

    Intracellular Mycobacterium tuberculosis exploits multiple host nitrogen sources during growth in human macrophages

    Get PDF
    Nitrogen metabolism of Mycobacterium tuberculosis (Mtb) is crucial for the survival of this important pathogen in its primary human host cell, the macrophage, but little is known about the source(s) and their assimilation within this intracellular niche. Here, we have developed 15N-flux spectral ratio analysis (15N-FSRA) to explore Mtb’s nitrogen metabolism; we demonstrate that intracellular Mtb has access to multiple amino acids in the macrophage, including glutamate, glutamine, aspartate, alanine, glycine, and valine; and we identify glutamine as the predominant nitrogen donor. Each nitrogen source is uniquely assimilated into specific amino acid pools, indicating compartmentalized metabolism during intracellular growth. We have discovered that serine is not available to intracellular Mtb, and we show that a serine auxotroph is attenuated in macrophages. This work provides a systems-based tool for exploring the nitrogen metabolism of intracellular pathogens and highlights the enzyme phosphoserine transaminase as an attractive target for the development of novel anti-tuberculosis therapies

    Murine Norovirus infection results in anti-inflammatory response downstream of amino acid depletion in macrophages

    No full text
    Murine norovirus (MNV) infection results in a late translation shut-off, that is proposed to contribute to the attenuated and delayed innate immune response observed both in vitro and in vivo. Recently, we further demonstrated the activation of the eIF2α kinase GCN2 during MNV infection, which has been previously linked to immunomodulation and resistance to inflammatory signalling during metabolic stress. While viral infection is usually associated with activation of dsRNA binding pattern recognition receptor PKR, we hypothesised that the establishment of a metabolic stress in infected cells is a proviral event, exploited by MNV to promote replication through weakening the activation of the innate immune response. In this study, we used multi-omics approaches to characterise cellular responses during MNV replication. We demonstrate the activation of pathways related to the integrated stress response, a known driver of anti-inflammatory phenotypes in macrophages. In particular, MNV infection causes an amino acid imbalance that is associated with GCN2 and ATF2 signalling. Importantly, this reprogramming lacks the features of a typical innate immune response, with the ATF/CHOP target GDF15 contributing to the lack of antiviral responses. We propose that MNV-induced metabolic stress supports the establishment of host tolerance to viral replication and propagation
    corecore