317 research outputs found

    Fast and slow light in zig-zag microring resonator chains

    Full text link
    We analyze fast and slow light transmission in a zig-zag microring resonator chain. This novel device permits the operation in both regimes. In the superluminal case, a new ubiquitous light transmission effect is found whereby the input optical pulse is reproduced in an almost simultaneous manner at the various system outputs. When the input carrier is tuned to a different frequency, the system permits to slow down the propagating optical signal. Between these two extreme cases, the relative delay can be tuned within a broad range

    Coupled-Mode Theory of Field Enhancement in Complex Metal Nanostructures

    Full text link
    We describe a simple yet rigorous theoretical model capable of analytical estimation of plasmonic field enhancement in complex metal structures. We show that one can treat the complex structures as coupled multi-pole modes with highest enhancements obtained due to superposition of high order modes in small particles. The model allows one to optimize the structures for the largest possible field enhancements, which depends on the quality factor Q of the metal and can be as high as Q^2 for two spherical particles. The "hot spot" can occur either in the nano-gaps between the particles or near the smaller particles. We trace the optimum field enhancement mechanism to the fact that the extended dipole modes of larger particles act as the efficient antennas while the modes in the gaps or near the smaller particles act as the compact sub-wavelength cavities. We also show how easily our approach can be extended to incorporate large numbers of particles in intricate arrangements.Comment: 23 pages, 7 figure

    Strain-free Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions

    Get PDF
    The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band which has a “clean” offset of150 meV situated below other energy valleys (Γ,X). The entire structure is strain-free because the lattice-matched Ge and Ge0.76Si0.19Sn0.05 layers are to be grown on a relaxed Ge buffer layer on a Si substrate. Longer lifetimes due to the weaker scattering of nonpolar optical phonons reduce the threshold current and potentially lead to room temperature operation

    Semi-analytic method for slow light photonic crystal waveguide design

    Full text link
    We present a semi-analytic method to calculate the dispersion curves and the group velocity of photonic crystal waveguide modes in two-dimensional geometries. We model the waveguide as a homogenous strip, surrounded by photonic crystal acting as diffracting mirrors. Following conventional guided-wave optics, the properties of the photonic crystal waveguide may be calculated from the phase upon propagation over the strip and the phase upon reflection. The cases of interest require a theory including the specular order and one other diffracted reflected order. The computational advantages let us scan a large parameter space, allowing us to find novel types of solutions.Comment: Accepted by Photonics and Nanostructures - Fundamentals and Application

    Band splitting and Modal Dispersion induced by Symmetry braking in Coupled-Resonator Slow-Light Waveguide Structures

    Full text link
    We study the dispersion relations in slow-light waveguide structures consisting of coupled microdisk resonators. A group theoretical analysis of the symmetry properties of the propagating modes reveals an interesting phenomenon: The degeneracy of the CW and CCW rotating modes is removed, giving rise to two distinct transmission bands. This effect induces symmetry-based dispersion which may limit usable bandwidth of such structures. The properties of this band splitting and its impact on CROW performance for optical communications are studied in detail

    Observaton of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides

    Get PDF
    We report the experimental observation of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides shifted longitudinally by half of modulation period. According to the symmetry analysis, such a coupler supports two electromagnetic modes with exactly matched slow or fast group velocities but different phase velocities for frequencies close to the edge of the photonic band. We confirm the predicted properties of the modes by directly extracting their dispersion and group velocities from the near-field measurements using specialized Bloch-wave spectral analysis method.This work was supported by the Australian Research Council

    Flat-band ferromagnetism in quantum dot superlattices

    Full text link
    Possibility of flat-band ferromagnetism in quantum dot arrays is theoretically discussed. By using a quantum dot as a building block, quantum dot superlattices are possible. We consider dot arrays on Lieb and kagome lattices known to exhibit flat band ferromagnetism. By performing an exact diagonalization of the Hubbard Hamiltonian, we calculate the energy difference between the ferromagnetic ground state and the paramagnetic excited state, and discuss the stability of the ferromagnetism against the second nearest neighbor transfer. We calculate the dot-size dependence of the energy difference in a dot model and estimate the transition temperature of the ferromagnetic-paramagnetic transition which is found to be accessible within the present fabrication technology. We point out advantages of semiconductor ferromagnets and suggest other interesting possibilities of electronic properties in quantum dot superlattices.Comment: 15 pages, 7 figures (low resolution). High-resolution figures are available at http://www.brl.ntt.co.jp/people/tamura/Research/PublicationPapers.htm

    Phaseless VLBI mapping of compact extragalactic radio sources

    Full text link
    The problem of phaseless aperture synthesis is of current interest in phase-unstable VLBI with a small number of elements when either the use of closure phases is not possible (a two-element interferometer) or their quality and number are not enough for acceptable image reconstruction by standard adaptive calibration methods. Therefore, we discuss the problem of unique image reconstruction only from the spectrum magnitude of a source. We suggest an efficient method for phaseless VLBI mapping of compact extragalactic radio sources. This method is based on the reconstruction of the spectrum magnitude for a source on the entire UV plane from the measured visibility magnitude on a limited set of points and the reconstruction of the sought-for image of the source by Fienup's method from the spectrum magnitude reconstructed at the first stage. We present the results of our mapping of the extragalactic radio source 2200 +420 using astrometric and geodetic observations on a global VLBI array. Particular attention is given to studying the capabilities of a two-element interferometer in connection with the putting into operation of a Russian-made radio interferometer based on Quasar RT-32 radio telescopes.Comment: 21 pages, 6 figure
    • …
    corecore