84 research outputs found

    Gamma ray production cross sections in proton induced reactions on natural Mg, Si and Fe targets over the proton energy range 30 up to 66 MeV

    Full text link
    Gamma-ray excitation functions have been measured for 30, 42, 54 and 66 MeV proton beams accelerated onto C + O (Mylar), Mg, Si, and Fe targets of astrophysical interest at the separate-sector cyclotron of iThemba LABS in Somerset West (Cape Town, South Africa). A large solid angle, high energy resolution detection system of the Eurogam type was used to record Gamma-ray energy spectra. Derived preliminary results of Gamma-ray line production cross sections for the Mg, Si and Fe target nuclei are reported and discussed. The current cross section data for known, intense Gamma-ray lines from these nuclei consistently extend to higher proton energies previous experimental data measured up to Ep ~ 25 MeV at the Orsay and Washington tandem accelerators. Data for new Gamma-ray lines observed for the first time in this work are also reported.Comment: 11 pages, 6 figures. IOP Institute of Physics Conference Nuclear Physics in Astrophysics VII, 28th EPF Nuclear Physics Divisional Conference, May 18-22 2015, York, U

    Isoscalar giant monopole strength in 58^{58}Ni, 90^{90}Zr, 120^{120}Sn and 208^{208}Pb

    Full text link
    Inelastic α\alpha-particle scattering at energies of a few hundred MeV and very-forward scattering angles including 0∘0^\circ has been established as a tool for the study of the isoscalar giant monopole (IS0) strength distributions in nuclei. An independent investigation of the IS0 strength in nuclei across a wide mass range was performed using the 0∘0^\circ facility at iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), South Africa, to understand differences observed between IS0 strength distributions in previous experiments performed at the Texas A\&M University (TAMU) Cyclotron Institute, USA and the Research Center for Nuclear Physics (RCNP), Japan. The isoscalar giant monopole resonance (ISGMR) was excited in 58^{58}Ni, 90^{90}Zr, 120^{120}Sn and 208^{208}Pb using α\alpha-particle inelastic scattering with 196196 MeV α\alpha beam and scattering angles θLab=0∘\theta_{\text{Lab}} = 0^\circ and 4∘4^\circ. The K600600 magnetic spectrometer at iThemba LABS was used to detect and momentum analyze the inelastically scattered α\alpha particles. The IS0 strength distributions in the nuclei studied were deduced with the difference-of-spectra (DoS) technique including a correction factor for the 4∘4^\circ data based on the decomposition of L>0L > 0 cross sections in previous experiments. IS0 strength distributions for 58^{58}Ni, 90^{90}Zr, 120^{120}Sn and 208^{208}Pb are extracted in the excitation-energy region Ex=9−25E_{\rm x} = 9 - 25 MeV.Using correction factors extracted from the RCNP experiments, there is a fair agreement with their published IS0 results. Good agreement for IS0 strength in 58^{58}Ni is also obtained with correction factors deduced from the TAMU results, while marked differences are found for 90^{90}Zr and 208^{208}Pb.Comment: 12 pages, 10 figures, regular article submitted to PR

    Fine structure of the isoscalar giant monopole resonance in 58^{58}Ni, 90^{90}Zr, 120^{120}Sn and 208^{208}Pb

    Full text link
    Over the past two decades high energy-resolution inelastic proton scattering studies were used to gain an understanding of the origin of fine structure observed in the isoscalar giant quadrupole resonance (ISGQR) and the isovector giant dipole resonance (IVGDR). Recently, the isoscalar giant monopole resonance (ISGMR) in 58^{58}Ni, 90^{90}Zr, 120^{120}Sn and 208^{208}Pb was studied at the iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) by means of inelastic α\alpha-particle scattering at very forward scattering angles (including 0∘0\circ). The good energy resolution of the measurement revealed significant fine structure of the ISGMR.~To extract scales by means of wavelet analysis characterizing the observed fine structure of the ISGMR in order to investigate the role of different mechanisms contributing to its decay width. Characteristic energy scales are extracted from the fine structure using continuous wavelet transforms. The experimental energy scales are compared to different theoretical approaches performed in the framework of quasiparticle random phase approximation (QRPA) and beyond-QRPA including complex configurations using both non-relativistic and relativistic density functional theory. All models highlight the role of Landau fragmentation for the damping of the ISGMR especially in the medium-mass region. Models which include the coupling between one particle-one hole (1p-1h) and two particle-two hole (2p-2h) configurations modify the strength distributions and wavelet scales indicating the importance of the spreading width. The effect becomes more pronounced with increasing mass number. Wavelet scales remain a sensitive measure of the interplay between Landau fragmentation and the spreading width in the description of the fine structure of giant resonances.Comment: 13 pages,7 figures, regular articl

    Towards Room Temperature Thermochromic Coatings with controllable NIR-IR modulation for solar heat management & smart windows applications

    Get PDF
    Solar heat management & green air-conditioning are among the major technologies that could mitigate heat islands phenomenon while minimizing significantly the CO2 global foot-print within the building & automotive sectors. Chromogenic materials in general, and thermochromic smart coatings especially are promising candidates that consent a noteworthy dynamic solar radiation Infrared (NIR-IR) regulation and hence an efficient solar heat management especially with the expected increase of the global seasonal temperature. Within this contribution, two major challenging bottlenecks in vanadium oxide based smart coatings were addressed. It is validated for the first time that the NIR-IR modulation of the optical transmission (∆TTRANS = T(T〈TMIT) − T(T〉TMIT) of Vanadium oxide based smart coatings can be controlled & tuned. This upmost challenging bottle-neck controllability/tunability is confirmed via a genuine approach alongside to a simultaneous drastic reduction of the phase transition temperature TMIT from 68.8 °C to nearly room temperature. More precisely, a substantial thermochromism in multilayered V2O5/V/V2O5 stacks equivalent to that of standard pure VO2 thin films but with a far lower transition temperature, is reported. Such a multilayered V2O5/V/V2O5 thermochromic system exhibited a net control & tunability of the optical transmission modulation in the NIR-IR (∆TTRANS) via the nano-scaled thickness’ control of the intermediate Vanadium layer. In addition, the control of ∆TTRANS is accompanied by a tremendous diminution of the thermochromic transition temperature from the elevated bulk value of 68.8 °C to the range of 27.5–37.5 ºC. The observed remarkable and reversible thermochromism in such multilayered nano-scaled system of V2O5/V/V2O5 is likely to be ascribed to a noteworthy interfacial diffusion, and an indirect doping by alkaline ions diffusing from the borosilicate substrate. It is hoped that the current findings would contribute in advancing thermochromic smart window technology and their applications for solar heat management in glass windows in general, skyscraper especially & in the automotive industry. If so, this would open a path to a sustainable green air-conditioning with zero-energy input

    A focus on selected perspectives of the NUMEN project

    Get PDF
    The use of double charge exchange reactions is discussed in view of their application to extract information that may be helpful to determinate the nuclear matrix elements entering in the expression of neutrinoless double beta decay half-life. The strategy adopted in the experimental campaigns performed at INFN - Laboratori Nazionali del Sud and in the analysis methods within the NUMEN project is briefly described, emphasizing the advantages of the multi-channel approach to nuclear reaction data analysis. An overview on the research and development activities on the MAGNEX magnetic spectrometer is also given, with a focus on the chosen technological solutions for the focal plane detector which will guarantee the performances at high-rate conditions

    Measurement and analysis of nuclear γ-ray production cross sections in proton interactions with Mg, Si, and Fe nuclei abundant in astrophysical sites over the incident energy range E = 30–66 MeV

    Get PDF
    The modeling of nuclear γ -ray line emission induced by highly accelerated particles in astrophysical sites (e.g., solar flares, the gas and dust in the inner galaxy) and the comparison with observed emissions from these sites needs a comprehensive database of related production cross sections. The most important reactions of protons and α particles are those with abundant target elements like C, O, N, Ne, Mg, Si, and Fe at projectile energies extending from the reaction threshold to a few hundred MeV per nucleon. In this work, we have measured γ -ray production cross section excitation functions for 30, 42, 54, and 66 MeV proton beams accelerated onto nat C , C + O (Mylar), nat Mg , nat Si , and 56 Fe targets of astrophysical interest at the Separated Sector Cyclotron (SSC) of iThemba LABS (near Cape Town, South Africa). The AFRODITE array equipped with eight Compton suppressed high-purity (HPGe) clover detectors was used to record γ -ray line energy spectra. For known, intense lines previously reported experimental data measured up to E p ≃ 25 MeV at the Washington and Orsay tandem accelerators were thus extended to higher proton energies. Our experimental data for the last three targets are reported here and discussed with respect to previous data and to the Murphy et al. compilation [Astrophys. J. Suppl. Ser. 183, 142 (2009)]

    South African Paediatric Surgical Outcomes Study : a 14-day prospective, observational cohort study of paediatric surgical patients

    Get PDF
    BACKGROUND : Children comprise a large proportion of the population in sub-Saharan Africa. The burden of paediatric surgical disease exceeds available resources in Africa, potentially increasing morbidity and mortality. There are few prospective paediatric perioperative outcomes studies, especially in low- and middle-income countries (LMICs). METHODS : We conducted a 14-day multicentre, prospective, observational cohort study of paediatric patients (aged <16 yrs) undergoing surgery in 43 government-funded hospitals in South Africa. The primary outcome was the incidence of in-hospital postoperative complications. RESULTS : We recruited 2024 patients at 43 hospitals. The overall incidence of postoperative complications was 9.7% [95% confidence interval (CI): 8.4–11.0]. The most common postoperative complications were infective (7.3%; 95% CI: 6.2–8.4%). In-hospital mortality rate was 1.1% (95% CI: 0.6–1.5), of which nine of the deaths (41%) were in ASA physical status 1 and 2 patients. The preoperative risk factors independently associated with postoperative complications were ASA physcial status, urgency of surgery, severity of surgery, and an infective indication for surgery. CONCLUSIONS : The risk factors, frequency, and type of complications after paediatric surgery differ between LMICs and high-income countries. The in-hospital mortality is 10 times greater than in high-income countries. These findings should be used to develop strategies to improve paediatric surgical outcomes in LMICs, and support the need for larger prospective, observational paediatric surgical outcomes research in LMICs. CLINICAL TRIAL REGISTRATION : NCT03367832.Jan Pretorius Research Fund; Discipline of Anaesthesiology and Critical Care, Nelson R Mandela School of Medicine, University of KwaZulu-Natal; Department of Anaesthesia and Perioperative Medicine, Groote Schuur Hospital and University of Cape Town; Department of Anaesthesia, University of the Witwatersrand; and the Paediatric Anaesthesia Community of South Africa (PACSA).https://bjanaesthesia.org2020-02-01gl2019Anaesthesiolog

    β and γ bands in N = 88 , 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory : vibrations, shape coexistence, and superdeformation

    Get PDF
    CITATION: Majola, S. N. T. et al. 2019. β and γ bands in N=88, 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory: Vibrations, shape coexistence, and superdeformation. Physical Review C, 100(4). doi:10.1103/PhysRevC.100.044324.The original publication is available at https://journals.aps.org/prc/A comprehensive systematic study is made for the collective β and γ bands in even-even isotopes with neutron numbers N = 88 to 92 and proton numbers Z = 62 (Sm) to 70 (Yb). Data, including excitation energies, B(E0) and B(E2) values, and branching ratios from previously published experiments are collated with new data presented for the first time in this study. The experimental data are compared to calculations using a five-dimensional collective Hamiltonian (5DCH) based on the covariant density functional theory (CDFT). A realistic potential in the quadrupole shape parameters V (β,γ ) is determined from potential energy surfaces (PES) calculated using the CDFT. The parameters of the 5DCH are fixed and contained within the CDFT. Overall, a satisfactory agreement is found between the data and the calculations. In line with the energy staggering S(I) of the levels in the 2γ + bands, the potential energy surfaces of the CDFT calculations indicate γ -soft shapes in the N = 88 nuclides, which become γ rigid for N = 90 and N = 92. The nature of the 02 + bands changes with atomic number. In the isotopes of Sm to Dy, they can be understood as β vibrations, but in the Er and Yb isotopes the 02 + bands have wave functions with large components in a triaxial superdeformed minimum. In the vicinity of 152Sm, the present calculations predict a soft potential in the β direction but do not find two coexisting minima. This is reminiscent of 152Sm exhibiting an X(5) behavior. The model also predicts that the 03 + bands are of two-phonon nature, having an energy twice that of the 02 + band. This is in contradiction with the data and implies that other excitation modes must be invoked to explain their origin.https://journals.aps.org/prc/abstract/10.1103/PhysRevC.100.044324Publisher’s versio
    • …
    corecore