10 research outputs found

    When the Model Does Not Fit the Data, the Model Is Wrong

    No full text

    The Neuromuscular Blocking Effects and Pharmacokinetics of ORG 9426 and ORG 9616 in the Cat

    No full text
    The neuromuscular blocking effects and pharmacokinetics of ORG 9426, 1.5 mg/kg and ORG 9616, 1.2 mg/kg iv, two new nondepolarizing neuromuscular blocking drugs, were studied in 28 cats (i.e., 14 cats with each drug) with and without renal pedicle ligation. A gas chromatographic assay was used to determine the concentrations of ORG 9426 and ORG 9616 and its desacetyl metabolites in plasma, urine, bile, and liver. The duration of neuromuscular blockade of both drugs was not altered by ligation of renal pedicles. Plasma clearance of ORG 9426 was slower in cats with ligated renal pedicles (P less than 0.01). With ORG 9616, mean elimination half-life was slower and mean residence time longer in cats with renal pedicle ligation. Otherwise, there was no significant differences with any pharmacokinetic variables in cats with and without renal pedicle ligation. Only 8.7 +/- 5.7% (SD) and 6.0 +/- 2.8% of an injected dose of ORG 9426 and ORG 9616 was excreted into the urine, respectively. Conversely, 54.4 +/- 9.2% and 52.4 +/- 9.2% of an injected dose of ORG 9426 and 35.7 +/- 12.2% and 46.8 +/- 9.7% of ORG 9616 were excreted into the bile in cats without and with renal pedicle ligation, respectively. Finally, 21.3 +/- 6.5% and 33.5 +/- 15.6% of ORG 9426 and 14.0 +/- 3.2% and 18.1 +/- 5.6% of ORG 9616 were in the liver 6 h after injection in cats without and with renal pedicle ligation respectively. The authors were able to account for the biodisposition of 84.4% and 85.9% of an injected dose of ORG 9426 in cats without and with renal pedicle ligation respectively

    The Neuromuscular Blocking Effects and Pharmacokinetics of ORG 9426 and ORG 9616 in the Cat

    No full text
    The neuromuscular blocking effects and pharmacokinetics of ORG 9426, 1.5 mg/kg and ORG 9616, 1.2 mg/kg iv, two new nondepolarizing neuromuscular blocking drugs, were studied in 28 cats (i.e., 14 cats with each drug) with and without renal pedicle ligation. A gas chromatographic assay was used to determine the concentrations of ORG 9426 and ORG 9616 and its desacetyl metabolites in plasma, urine, bile, and liver. The duration of neuromuscular blockade of both drugs was not altered by ligation of renal pedicles. Plasma clearance of ORG 9426 was slower in cats with ligated renal pedicles (P less than 0.01). With ORG 9616, mean elimination half-life was slower and mean residence time longer in cats with renal pedicle ligation. Otherwise, there was no significant differences with any pharmacokinetic variables in cats with and without renal pedicle ligation. Only 8.7 +/- 5.7% (SD) and 6.0 +/- 2.8% of an injected dose of ORG 9426 and ORG 9616 was excreted into the urine, respectively. Conversely, 54.4 +/- 9.2% and 52.4 +/- 9.2% of an injected dose of ORG 9426 and 35.7 +/- 12.2% and 46.8 +/- 9.7% of ORG 9616 were excreted into the bile in cats without and with renal pedicle ligation, respectively. Finally, 21.3 +/- 6.5% and 33.5 +/- 15.6% of ORG 9426 and 14.0 +/- 3.2% and 18.1 +/- 5.6% of ORG 9616 were in the liver 6 h after injection in cats without and with renal pedicle ligation respectively. The authors were able to account for the biodisposition of 84.4% and 85.9% of an injected dose of ORG 9426 in cats without and with renal pedicle ligation respectively

    Long-term Administration of Pancuronium and Pipecuronium in the Intensive Care Unit

    No full text
    This study was performed to determine the optimum dose of pancuronium (n = 30) and pipecuronium (n = 30) under continuous sedation and analgesia in the intensive care unit (ICU). This was an open clinical investigation in 60 critically ill patients with head injury, multiple trauma (in some complicated with sepsis and multi-organ failure), requiring neuromuscular block for ventilation for at least 48 h. Emphasis was placed on the neuromuscular monitoring with a peripheral nerve stimulator and adequate sedation and analgesia. Satisfactory block was achieved in all cases with an average dose of 3 mg/h with either compound. None of the patients experienced prolonged paralysis, muscle weakness, or other neuromuscular dysfunctions in the postventilatory period. We suggest that adequate use of sedative hypnotics and opioids plus neuromuscular monitoring allowed us to optimize the dose of muscle relaxants according to the need of individual patients.</p

    Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study

    No full text
    Background Results from retrospective studies suggest that use of neuromuscular blocking agents during general anaesthesia might be linked to postoperative pulmonary complications. We therefore aimed to assess whether the use of neuromuscular blocking agents is associated with postoperative pulmonary complications. Methods We did a multicentre, prospective observational cohort study. Patients were recruited from 211 hospitals in 28 European countries. We included patients (aged ≥18 years) who received general anaesthesia for any in-hospital procedure except cardiac surgery. Patient characteristics, surgical and anaesthetic details, and chart review at discharge were prospectively collected over 2 weeks. Additionally, each patient underwent postoperative physical examination within 3 days of surgery to check for adverse pulmonary events. The study outcome was the incidence of postoperative pulmonary complications from the end of surgery up to postoperative day 28. Logistic regression analyses were adjusted for surgical factors and patients’ preoperative physical status, providing adjusted odds ratios (ORadj) and adjusted absolute risk reduction (ARRadj). This study is registered with ClinicalTrials.gov, number NCT01865513. Findings Between June 16, 2014, and April 29, 2015, data from 22803 patients were collected. The use of neuromuscular blocking agents was associated with an increased incidence of postoperative pulmonary complications in patients who had undergone general anaesthesia (1658 [7·6%] of 21694); ORadj 1·86, 95% CI 1·53–2·26; ARRadj –4·4%, 95% CI –5·5 to –3·2). Only 2·3% of high-risk surgical patients and those with adverse respiratory profiles were anaesthetised without neuromuscular blocking agents. The use of neuromuscular monitoring (ORadj 1·31, 95% CI 1·15–1·49; ARRadj –2·6%, 95% CI –3·9 to –1·4) and the administration of reversal agents (1·23, 1·07–1·41; –1·9%, –3·2 to –0·7) were not associated with a decreased risk of postoperative pulmonary complications. Neither the choice of sugammadex instead of neostigmine for reversal (ORadj 1·03, 95% CI 0·85–1·25; ARRadj –0·3%, 95% CI –2·4 to 1·5) nor extubation at a train-of-four ratio of 0·9 or more (1·03, 0·82–1·31; –0·4%, –3·5 to 2·2) was associated with better pulmonary outcomes. Interpretation We showed that the use of neuromuscular blocking drugs in general anaesthesia is associated with an increased risk of postoperative pulmonary complications. Anaesthetists must balance the potential benefits of neuromuscular blockade against the increased risk of postoperative pulmonary complications

    Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): a multicentre, prospective observational study

    No full text
    corecore