4 research outputs found

    Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols

    Get PDF
    Postimpregnation of Pd nanoparticles (NPs) stabilized within hyper-cross-linked polystyrene with sodium or potassium hydroxides of optimal concentration was found to significantly increase the catalytic activity for the partial hydrogenation of the C–C triple bond in 2-methyl-3-butyn-2-ol at ambient hydrogen pressure. The alkali metal hydroxide accelerates the transformation of the residual Pd(II) salt into Pd(0) NPs and diminishes the reaction induction period. In addition, the selectivity to the desired 2-methyl-3-buten-2-ol increases with the K- and Na-doped catalysts from 97.0 up to 99.5%. This effect was assigned to interactions of the alkali metal ions with the Pd NPs surfaces resulting in the sites’ separation and a change of reactants adsorption

    Pd Nanoparticles Stabilized by Hypercrosslinked Polystyrene Catalyze Selective Triple C-C Bond Hydrogenation and Suzuki Cross-Coupling

    No full text
    This paper describes the synthesis of Pd-containing catalysts based on nonfunctionalized hypercrosslinked polystyrene via impregnation with Pd acetate. Developed Pd nanoparticulate catalyst allowed achieving conversion of aryl halide up to 90% in Suzuki cross-coupling reaction under mild conditions and at the absence of phase-transfer agents. During the selective hydrogenation of triple C-C bond of 2-methyl-3-butyn-2-ol, up to 96% selectivity with respect to corresponding olefinic alcohol was found at 95% conversion. The influences of the procedure of catalyst synthesis like precursor decomposition and reductive activation method on Pd nanoparticle formation are discussed
    corecore