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ABSTRACT: Postimpregnation of Pd nanoparticles (NPs)
stabilized within hyper-cross-linked polystyrene with sodium or
potassium hydroxides of optimal concentration was found to  wmBy
significantly increase the catalytic activity for the partial __
hydrogenation of the C—C triple bond in 2-methyl-3-butyn-2-
ol at ambient hydrogen pressure. The alkali metal hydroxide
accelerates the transformation of the residual Pd(II) salt into

99.5% .’97.51/0/

Selectivity .'*/

Pd(0) NPs and diminishes the reaction induction period. In ° "

addition, the selectivity to the desired 2-methyl-3-buten-2-ol 2 o ° e

increases with the K- and Na-doped catalysts from 97.0 up to REren C,’SS;’nked ) ,’//; e o
polysiyrene o @ w

99.5%. This effect was assigned to interactions of the alkali metal
ions with the Pd NPs surfaces resulting in the sites” separation

Time, s

and a change of reactants adsorption.

1. INTRODUCTION

Pd-catalyzed selective hydrogenations of the carbon—carbon
triple bond in alkynols is an important reaction in the
production of fine chemicals such as fragrances (linalool,
terpineol, geraniol, citral, etc.), pharmaceuticals, and fat-soluble
vitamins (e.g, E, K)."” Industrial alkynol hydrogenation is
usually carried out as a 3-phase reaction using the Lindlar
catalyst (Pd/CaCO; doped with lead acetate) in the presence
of quinolone, employed as liquid-phase modifier. This system
delivers a selectivity around 95% at close to 100%
conversion.">* However, the modifiers can contaminate the
target product, which is unacceptable to the pharmaceutical and
food industries.

Despite numerous achievements in the development of
alternative catalysts to the industrial Lindlar catalytic process,”*
attaining high selectivity with reasonable activity/stability
(especially in the case of alkynols containing terminal C—C
triple bonds) remains challenging and requires careful selection
of the catalyst and optimization of the reaction conditions.

There are several ways to improve catalyst efficiency in
hydrogenations of triple bonds, for example, adjusting the size
and morphology of Pd nanoparticles (NPs),” with small Pd
NPs known to be selective due to the absence of a f-hydride
phase,” and/or the addition of a second metal to the Pd NP
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system. There are two main ways to improve selectivity, also
involving addition of a second metal to form bimetallic alloyed
NPs and/or the addition of promoters, surface dopants, or
modifiers. It is noteworthy that “catalytic poisons” such as Pb
and Sn, and other metals such as Na, K, Zn, Ag, Au, etc., may
be used. For example, it was shown that the addition of Ag
results in the formation of alloyed Ag—Pd NPs and a selectivity
of 96% for the partially hydrogenated product of dehydroiso-
phytol (cf. Pd NPs which exhibit a selectivity of 78%).”

Alkali metal cations are known promoters of Pd-containing
hydrogenation catalysts,”~ "
pregnation of Pd-catalyst with aqueous solutions containing

often incorporated by postim-

alkali metal cations with subsequent reduction in a hydrogen

8-10
atmosphere.

Cho et al. have shown that postimpregnation
provides enhanced catalytic activity of the target product in the
hydrogenation of biphenol over Pd/C in comparison to

preimpregnated and coimpregnated catalysts. It was suggested
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Table 1. MBY Hydrogenation over the 0.7%-Pd/MN100 Catalysts”

N catalyst modifier Svise £ 0.5, % (Xymy = 95%) R + 0.1, molyy-mol ™' pys™
1 0.7%-Pd/MN100 none 97.5 42
2 0.7%-Pd/MN100-R none 95.0 4.1
3 0.7%-Pd/MN100-w treated with H,O 97.0 3.7
4 0.7%-Pd/MN100-Na NaOH, 0.5 mol/L 99.0 5.9
S 0.7%-Pd/MN100-K-1 KOH, 0.1 mol/L 99.5 3.6
6 0.7%-Pd/MN100-K-2 KOH, 0.25 mol/L 98.5 4.6
7 0.7%-Pd/MN100-K-3 first use KOH, 0.5 mol/L 99.0 7.1
8 0.7%-Pd/MN100-K-3 first use without in situ reduction 99.0 52
9 0.7%-Pd/MN100-K-3 second use 98.0 3.8
10 0.7%-Pd/MN100-K-3 modified additionally after the first use 99.0 33
11 0.7%-Pd/MN100-R-K-3 98.5 2.0
12 0.7%-Pd/MN100-K-3-R 94.5 6.0
13 0.7%-Pd/MN100-K-4 KOH, 1.0 mol/L 98.5 4.3

“Reaction conditions: toluene (30 mL), 90 °C, MBY concentration 0.6 mol/L (1.5 g), Pd concentration 4.4 X 107> mol/L (0.02 g of the catalyst).

that postimpregnation results in the alkali metal being located
in the vicinity of the catalytically active Pd NPs."’

Pellegrini et al. demonstrate a promotion effect of K,COj; on
a Pd/SiO,—AlO; catalyst, which leads to the formation of
mixed K/Pd-oxides even at low potassium content.® It should
be emphasized that the formation of a mixed oxide phase is
possible only at high temperatures (>500 °C).'® Alkali metal
salts can also influence the mobility of Pd NPs on solid
supports, thus preventing sintering during thermal treat-
ments.”'? It is noteworthy that in contrast to the results of
Pellegrini et al,” Jia et al” did not find any mixed Pd/K-
containing species. However, K-containing species either on the
Pd NPs, in the form of islands, or at the interface between Pd
and the support were not excluded.” This so-called “geometric
effect” of alkali metal ions may help preserve catalytically active
Pd NPs from sintering during catalyst reduction at high
temperatures. However, due to the geometric effect, alkali metal
ions, especially at high loadin%s, may decrease the catalytic
activity by blocking active sites.

There are also other reasons of adding alkali metal salts to
Pd-containing catalysts, for example, they help to avoid HCI
accumulation during hydrodechlorination processes.'”™"* In
the case of hydrodechlorination of chlorobenzene, Aramendia
et al. have shown that the presence of Na" ions in the vicinity of
the Pd NPs facilitates chlorobenzene adsorption by capturing
the chloride with the formation of NaClL'> However, only
highly dispersed palladium can benefit from the addition of
NaOH."

Herein, we present the beneficial effects of postimpregnation
of Pd NPs catalyst based on hyper-cross-linked polystyrene
(HPS) by aqueous solutions of alkali metal hydroxides (NaOH
and KOH). The Pd/HPS catalyst was previously shown to be
promising catalyst for the partial hydrogenation of triple C—C
bonds in alkynols."” ™"

The nature of the Pd precursor and the type of HPS
(functionalized or without any functional groups) strongly
influences the activity of HPS-based catalysts. In our previous
work, MN100-type HPS impregnated with PdCl,(CH,CN),
and reduced in situ with hydrogen was shown to be the most
efficient catalyst leading to a selectivity of ~98%, with
reasonable activity, in the partial hydrogenation of 2-methyl-
3-butyn-2-ol (MBY)."” However, independent of the nature of
the precursor, the catalysts based on the MN100 support show
an induction period in spite of an in situ catalyst activation
procedure. In the present study we address the question of the

induction period and the influence of alkali metal hydroxides on
this phenomenon in order to optimize the catalytic efficiency
(activity and selectivity) of the Pd/HPS catalysts.

2. EXPERIMENTAL SECTION

Materials. HPS Macronet MN100 (Purolite Int., United
Kingdom) was washed with distilled water and acetone and
dried under vacuum as described elsewhere.”’ 2-Methyl-3-
butyn-2-ol (MBY, >99%), 2-methyl-3-buten-2-ol (MBE,
>97%), 2-methyl-2-butanol (MBA, >96%), bis(acetonitrile)-
palladium(IT)chloride (PdCL,(CH;CN),, >99%), tetrahydrofur-
an (THF, >99.9%), toluene (99.8%), potassium hydroxide
(KOH, >85%), sodium carbonate (Na,CO,; >99.5%) and
sodium hydroxide (NaOH, >98%) were obtained from Sigma-
Aldrich. All chemicals were used as received. Distilled water was
purified with an Elsi-Aqua water purification system.

Catalyst Synthesis. Pd/MN100 catalyst was synthesized
via the conventional wet-impre%nation method according to the
procedure described elsewhere.” In a typical experiment, 3 g of
pretreated, dried, and crushed (<63 ym) granules of HPS were
impregnated with 9 mL of the PdCl,(CH;CN), THF solution
(concentration 0.022 mol/L). The Pd-containing polymer was
dried at 70 °C, treated with 8.5 mL of Na,CO; aqueous
solution (concentration 0.08 mol/L) and dried until a constant
weight was achieved. It was expected that such a treatment
would lead to hydrolysis of PdCL,(CH;CN), and precipitation
of PdO inside the HPS cavities. The catalyst was washed with
distilled water until a pH of 7 was reached and then dried at 70
°C. In this way the catalyst with metal loading of 0.7 wt % was
obtained (designated as 0.7%-Pd/MN100 and used as a
reference). This catalyst was also reduced in hydrogen at a
H, flow rate of 100 mL/min and a temperature of 300 °C for 2
h (designated as 0.7%-Pd/MN100-R).

The obtained catalysts (i.e., without and with H, reduction)
were modified with NaOH or KOH prior to catalysis. In a
typical experiment, 0.02 g of 0.7%-Pd/MN100 or 0.7%-Pd/
MN100-R was impregnated with 0.09 mL of alkaline hydroxide
solution. In the case of NaOH, a concentration of 0.5 mol/L
was used (catalyst designated as 0.7%-Pd/MN100-Na), while in
the case of KOH concentrations of 0.1, 0.25, 0.5, and 1 mol/L
were used (catalysts designated as 0.7%-Pd/MN100-K-1, 0.7%-
Pd/MN100-K-2, 0.7%-Pd/MN100-K-3, and 0.7%-Pd/MN100-
K-4, respectively; see Table 1). After modification all the
catalysts were dried at 75 °C for 20 h.
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The 0.7%-Pd/MN100 catalyst was also treated with distilled
water (designated as 0.7%-Pd/MN100-w) according to the
procedure described above in order to reveal the influence of
alkali metal cation.

The possibility of gas-phase reduction of the catalyst
modified with 0.5 mol/L aqueous solution of KOH (designated
as 0.7%-Pd/MN100-K-3-R) was also investigated.

The general scheme of the used treatments of the 0.7%-Pd/
MN100 catalysts is presented in Figure 1.

0.7%-Pd/MN100 0.7%-Pd/MN100-R

(300°C.2h) K( P[lo

wetting 9 drying (75°C,20h)
impregnation with 0.7%-Pd/MN100-w

alkaline solution

drying (75°C,20h)

0.7%-Pd/MN100-R-K-3

0.7%-Pd/MN100-K-3-R
H.

} KOH ° drying (75°C,20h)
NaOH

0.7%-Pd/MN100-K-1

0.7%-Pd/MN100-K-2
0.7%-Pd/MN100-K-3
0.7%-Pd I\[NIOO—I\'-4J

drying (75°C,20h)

0.7%-Pd/MN100-Na (300°C,2h)

Figure 1. Modification and reduction of 0.7%-Pd/MN100 catalysts.

Additionally, the in situ activation by hydrogen during 60 min
was applied to all catalysts before testing.

Catalyst Testing: Setup, Procedure, and Analytics.
Testing of the catalysts in the selective hydrogenation of MBY
to MBE (Figure 2) was performed at 90 °C in a 60 mL
isothermal glass batch reactor connected to a gasometrical
buret for online monitoring of hydrogen consumption, and
installed in a shaker for vigorous mixing (more than 800 two-
sided shaking per minute), which excludes external diffusion
limitations.'® The internal diffusion limitations were also
excluded via powdering of HPS to <63 um.'®"” Toluene was
used as a solvent. A recirculating bath (LOIP LT 100, Saint-
Petersburg, Russia) was used to stabilize the reaction
temperature within +1 °C using water as the thermal medium.
The choice of solvent and reaction temperature was based on
previous studies. "’

At the beginning of each experiment, the temperature was set
to 90 °C, and allowed to stabilize (ca. 30 min). After that the
reactor was charged with catalyst (0.02 g) and toluene (15 mL),
and hydrogen was then introduced. All catalysts were activated
in situ during 60 min before the MBY addition (time “zero”, t =
0 for the reaction). It is noteworthy that the addition of MBY
(0.018 mol) was accompanied by the addition of 15 mL of
toluene, so the total volume of liquid phase was 30 mL. A
noninvasive liquid sampling system allowed a controlled
removal of aliquots (0.1—0.5 mL) from the reactor by the
syringe and analyzed via GC—MS (Shimadzu GCMS-
QP2010S) equipped with a capillary column HP-IMS (30 m
X 0.25 mm i.d., 0.25 ym film thickness). Helium was used as a
carrier gas. The concentrations of the substrate/products were
determined using an internal standard (diphenylamine)
calibration method. Repeated reaction runs with the same

catalyst batch delivered concentration values that were
reproducible within +0.5%. The conversion of MBY is defined
as

CM_BY, 0o CMBY

Xypy (%) = 100

Cnmpy,o
and selectivity with respect to MBE as the target product, is

C
SMBE(%) = ¢100
MBY,0 — CMBY

Catalytic activity was characterized by the rate of MBY
concentration calculated in the range of linear dependency X
% on time (induction as well as slow-down periods were
excluded from the calculation), and designated as R, [molygy-
molpys7H.

R = (Nypyxo — Nupyxi) X Npg ' X (7, = 7,)7, where
Nypyxe and Nypyy; are the numbers of moles of MBY
converted at the reaction time 7, and 7}, respectively; Np, is the
total number of moles of Pd participating in the reaction.

Catalyst Characterization. X-ray photoelectron spectros-
copy (XPS) data were obtained using Mg K a (hv = 1253.6 eV)
radiation on an ES-2403 spectrometer (Institute for Analytic
Instrumentation of RAS, St. Petersburg, Russia) equipped with
energy analyzer PHOIBOS 100-SMCD (SPECS GmbH,
Germany) and X-ray source XR-50 (SPECS GmbH, Germany).
All data were acquired at an X-ray power of 250 W. Survey
spectra were recorded at an energy step of 0.5 eV with an
analyzer pass energy of 40 eV. High resolution spectra were
recorded at an energy step of 0.05 eV with an analyzer pass
energy of 7 eV. Samples were allowed to outgas for 180 min
before analysis and were stable during the examination. The
data analysis was performed with CasaXPS. The binding energy
of C 1s of the HPS was taken as 285.0 eV. The accuracy of
identification of binding energies was 0.1 eV.

Pd NPs sizes were evaluated by high-angle annular dark-field
scanning transmission electron microscopy (HAADF STEM)
using FEI Talos F200S electron microscope working at
accelerating voltage of 200 keV. Samples were prepared by
embedding the catalyst in epoxy resin (EPON 812, polymer-
ization conditions: 24 h at 333 K) with microtomming (ca. 50
nm thick) at ambient temperature. A holey carbon/Cu grid
(300 mesh) was used as a sample support. The grid was plasma
cleaned (for S min) using a Fischione 1070 plasma cleaner
operated at a forward power of 10.45 W and 30 sccm gas flow.
HAADF STEM measurements were accompanied by the EDX
analysis.

DRIFT spectra of CO adsorption were recorded using a high
temperature Harrick DRIFT cell on a PerkinElmer Frontier
spectrometer equipped with a mercury cadmium telluride
detector. The setup enables treatment of the sample with gas
flows (He, H,, CO) and under vacuum from 10 to 500 °C.
Spectra were typically collected with 32 scans at a resolution of
4 cm™

0.7%-Pd/NIN100

_ >\OH

2-methyl-3-butyn-2-ol
(MBY)

H,

Figure 2. Reaction network of MBY selective hydrogenation to MBE.

2-methyl-3-buten-2-ol
(MBE, target product)

k 0.7%-Pd/MN100 \)\
_—
x OH OH

H,

2-methyl-2-butanol
(MBA, side produict)
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Figure 3. Kinetic curves showing MBE accumulation showing the influence of modifier on the 0.7%-Pd/MN100 catalysts (a), influence of KOH
concentration (b), repeated use (c), and influence of gas-phase (hydrogen) reduction (d).

3. RESULTS AND DISCUSSION

3.1. Hydrogenation of MBY. The hydrogenation of MBY
using Pd/HPS catalysts (Table 1 and Figure 3) results in the
complete conversion of MBY and overhydrogenation of target
product (MBE) to MBA. Thus, the reaction was stopped after
reaching >99% MBY conversion.

Modification of the reference catalyst 0.7%-Pd/MN100 with
0.5 mol/L aqueous solution of NaOH or KOH results in an
increase in selectivity of the partially reduced MBE product
(from 97.5% to ca. 99%). A decrease of the induction period
accompanied by a ca. 1.4-fold increase of activity (specific
transformation rate, R) was also observed (Figure 3a),
presumably due to accelerated active site formation (ie.
more facile reduction of residual Pd(II) species in the presence
of alkali metal hydroxides) during the in situ liquid-phase
activation. It is noteworthy that if the in situ activation step is
excluded (see Figure 3c), a longer induction period is observed,
confirming the proposed nature of induction period and the
necessity of in situ reductive activation.

It should also be noted that the catalyst modified by KOH is
more active (the reaction proceeds faster) than the one
modified with NaOH (3a). This difference is in agreement with
a study by Lamy-Pitara et al. which showed that the activity of a
Pt catalyst in the hydrogenation of double bonds depends on
the size of the doping cation.”’

Figure 4 compares the dependency of selectivity vs
conversion for the reference catalyst and 0.7%-Pd/MN100-K-
3. The higher selectivity was obtained for all MBY conversions
up to X = 95% suggesting that doping with KOH changes the
reaction network and diminishes MBY overhydrogenation.

100,0

99,5 4

99,0 4

98,5

Selectivity to MBE, %

98,0 [}
075/ | ® 0.7%-Pd/MN100
O 0.7%-Pd/MN100-K-3
97,0 T T T T

20 40 60 80 100
Conversion of MBY, %

Figure 4. Dependency of selectivity vs conversion of 0.7%-Pd/MN100
and 0.7%-Pd/MN100-K-3 in the partial hydrogenation of MBY.

The influence of the KOH-modifier concentration was
studied (Table 1, no. 5S—7 and no. 12; Figure 3b) with the
concentration of the KOH solution decreasing from 1.0 mol/L
stepwise to 0.1 mol/L, revealing an influence on the length of
the induction period (Figure 3b; Table 1, no. 3), but with the
selectivity to MBE remaining almost constant at 99 + 0.5%.
Only in the case of “zero” concentration of modifier, that is, for
0.7%-Pd/MN100-w (Table 1, no. 3) does the selectivity
decrease to 97.0% (i, for 0.7%-Pd/MN100-w). Thus, the
KOH increases the selectivity and shortens the duration of the
induction period as compared to the reference catalyst (see
section 3.2). Only at the highest KOH concentration of 1 mol/
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L is the induction period the longest of all the catalysts, with a
selectivity of ~98.5% at 95% conversion (Table 1, no. 13;
Figure 3b). The catalytic activity was observed to increase with
the concentration of KOH passing through the maximum at
KOH 0.5 mol/L (Table 1, no. 7; Figure 3b). It has previously
been suggested that at high concentrations the K ions block
the surfaces of the Pd NPs decreasing the reaction rate."’

While investigating the adsorption of carbon monoxide and
hydrogen on alkali-doped Pd surfaces,”” it was found that the
adsorption energies vary. Thus, the increase in selectivity and
activity observed in the partial hydrogenation of MBY using the
0.7%-Pd/MN100-K-3 catalyst (doped by alkali metal at
optimized concentration) may be attributed to a change in
the adsorption equilibrium of hydrogen and/or the substrate.

The stability of the 0.7%-Pd/MN100-K-3 catalyst was
studied by performing repeated reaction runs (see Table 1,
no. 7—9; Figure 3c). After the first run the induction period
completely disappears, indicating that the induction period is
due to the in situ reduction of palladium and active site
formation. The form of the kinetic curve in the case of second
reaction run is similar to that observed for prereduced Pd NP
catalysts.”® After the second run the selectivity of 0.7%-Pd/
MN100-K-3 slightly decreases from 99.0% to 98.0% (Table 1,
no. 7 and no. 8). Therefore, the catalyst was treated with
additional KOH after the first run (Table 1, no. 9) and the
selectivity remained at 99.0%, albeit at the expense of the
reaction rate (see the kinetic curve of MBE accumulation
Figure 3c). The investigation of multiple reuses of the catalyst
0.7%-Pd/MN100-K-3 shows a drop of activity after the first
reaction run followed by its stabilization (Figure S). The
selectivity to the desired product MBE remained almost the
same 98.5 + 0.5%.

100 10
I selectivity to MBE
catalytic activity, R
98 - -8
7
96 4 L6
= K
o
94 - -4
%
92 A F2
90 0
1 4

Number of catalytic uses of 0.7%-Pd/MN100-K-3

Figure S. Consecutive reaction runs over the 0.7%-Pd/MN100-K-3.

Reducing 0.7%-Pd/MN100 with hydrogen (Table 1, no. 2)
prior to use also resulted in the elimination of induction period
(Figure 3d), with the selectivity of the reaction decreasing to
95.0%. This is possibly due to differences in the size of the Pd
NPs (see section 3.2, HAADF STEM measurements). The in
situ liquid-phase reduced Pd NPs have a mean diameter of 4.7
nm following the reaction of MBY, whereas the hydrogen-
reduced Pd NPs, performed at 300 °C, are 13.5 nm in diameter
(the optimum size for MBY hydrogenation is considered to be
3—5 nm °). The selectivity of MBE obtained with the
hydrogen-reduced 0.7%-Pd/MN100-R-K-3 catalyst and the
reduced KOH-modified 0.7%-Pd/MN100-K-3-R catalyst is the

same (94.5%) with the latter catalyst having a ca. 1.5-fold
higher activity (Table 1, no. 2 and no. 12).

3.2. Catalyst Characterization. X-ray Photoelectron
Spectroscopy (XPS). The XPS for the 0.7%-Pd/MN100
reference catalyst (Table 2, Figure S1) reveals the following

Table 2. States of Palladium Found from Modelling of the
Pd 3d Band in the XPS Data in Selected Catalysts

chemical states of Pd on catalyst surface (%)

0.7%-Pd/MN100-K-3

0.7%- after the in
Pd/ 0.7%-Pd/ situ after the
chemical state MN100 MNI100-R initial reduction 1st use
PACL,(CH,CN), 42 24 59 44 26
PdCl, 21 8 1 6 3
PdO 6 32 28 18 9
pd° 7 18 8 11 34
Pd, clusters 24 18 4 21 28

values of binding energy of Pd 3ds/,: 337.7 eV (corresponds to
PdCL>*), 338.6 eV (binding energy of (CH,CN),PdCl, was
found to be equal 338.7 €V), 336.1 eV (small clusters of Pd),*
335.0 eV (bulk Pd NPs**), and 337.1 eV (corresponds to
PdO***°). The PdCl, is derived from the PdClL(CH,CN),
precursor. From the XPS analysis of the 0.7%-Pd/MN100-K-3
catalyst (Table 2, Figures S3—SS) there is no evidence for the
formation of alkali metal—palladium salts such as K,PdO, or
KPdO, which could potentially be formed during the catalyst
preparation.8

From the presented data (Table 2 and XPS spectra presented
in the Supporting Information) it can be seen that post-
impregnation of 0.7%-Pd/MN100 with KOH results in a sharp
decrease of PdCl, on the catalyst surface (Figure S1 vs S3)
concomitant with the increase of PdO content. Though the
rates of reduction of PdCl, and PdO to both Pd° and Pd,
clusters seems to be almost the same, the transformation of
PdCL,(CH;CN), to PdCl, is slower leading to slower
accumulation of palladium chloride for the modified catalyst
(0.7%-Pd/MN100-K-3) during the reduction with hydrogen in
situ and also the subsequent hydrogenation of MBY. This may
cause the low concentration of HCI, which is formed as a result
of PdCl, reduction and may inhibit MBY hydrogenation. It can
explain the longer induction period in the case of reference
sample 0.7%-Pd/MN100 as compared to 0.7%-Pd/MN100-K-
3. After the first catalytic run the 0.7%-Pd/MN100-K-3 catalyst
contains considerably more Pd NPs (Figure SS), which is also
consistent with the absence of the induction period observed
during the second run (Figure 3).

It is important to underline that the reduction of the 0.7%-
Pd/MN100-K-3 catalyst is more efficient during the hydro-
genation of MBY as compared to the initial in situ reduction by
hydrogen (see Table 2). Recently, it was shown that after the
gas-phase reduction of Pd/MN100 catalysts, Pd*" species are
observed in the resulting MN100-based samples irrespective of
the Pd precursor used.”” The 0.7%-Pd/MNI100-R catalyst,
prepared by reduction in hydrogen at 300 °C also contains
different Pd species (Table 2, Figure S2), that is,
PdCl,(CH,CN),, PdCl,, PdO, Pd, clusters, and Pd NPs. It is
noteworthy that the total percentage of Pd, clusters and Pd
NPs (36%) for the 0.7%-Pd/MN100-R catalyst is similar to the
0.7%-Pd/MN100-K-3 catalyst (32%) after in situ reduction.
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Figure 7. HAADF STEM images and histograms of particle size distributions of the 0.7%-Pd/MN100-Na catalyst after MBY hydrogenation (a,b)

and the 0.7%-Pd/MN100-R catalyst (c,d).

It was surprising to find unreduced Pd species, especially in
the case of the catalysts treated in hydrogen flow at high
temperature. Thus, the reference catalyst 1%-Pd/AC was
prepared using PdCL,(CH;CN), as a precursor and activated
carbon (AC) as a support via the same procedure as in the case
of MN100. It was found that in the as-synthesized 1%-Pd/AC,
PdCL,(CH;CN), decomposed leaving behind PdCl, (59.8%)
and metallic Pd (34.5%) (Figure S6). After the treatment of
this catalyst in H, flow at 300 °C for 2 h, only Pd® (59.0%) and
PdO (41.0%) were found (Figure S7). Formation of PdO could
be explained by the interaction of PdCl, with the —OH
containing species of the AC surface being stable under
reductive treatment applied.

Therefore, we conclude that MN100 support may stabilize
Pd** species inside the polymeric network probably due to the
interaction with the aromatic rings preventing full Pd**
reduction under the H, flow.

High-Angle Annular Dark-Field Scanning Transmission
Electron Microscopy (HAADF STEM). In the fresh reference
0.7%-Pd/MN100 catalyst and in the alkali metal modified
catalysts no Pd NPs were found. EDX mapping of the 0.7%-
Pd/MN100-Na clearly shows the presence of molecular
dispersion of Pd and Cl in the HPS (Figure 6).

HAADF STEM images and histograms of particle size
distributions of the 0.7%-Pd/MN100-Na catalyst recorded after
MBY hydrogenation and the 0.7%-Pd/MN100-R catalyst are
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shown in Figure 7. For the 0.7%-Pd/MN100-Na catalyst the
mean diameter of the Pd NPs is 4.7 & 1.0 nm (Figure 7a,b),
which is essentially the same size as the Pd NPs in a previously
reported 0.7%-Pd/MN100 catalyst (4.5 + 0.9 nm'®).

In contrast, the 0.7%-Pd/MN100-R catalyst contains Pd NPs
with a much larger mean diameter of 13.2 + 4.8 nm (Figure
7¢,d). Despite their larger size they are more efficient catalysts
for the hydrogenation of MBY, presumably due to the larger
content of Pd(0) as compared to the other catalysts.

To understand the increase of MBE selectivity, the EDX
mapping of 0.7%-Pd/MN100-Na catalyst after MBY hydro-
genation was carried out. The results are shown in Figure 8
revealing that the surface of the Pd NPs is decorated by sodium.

10 nm

i

Figure 8. EDX mapping of the 0.7%-Pd/MN100-Na catalyst after
MBY hydrogenation: distribution of palladium (a) and sodium (b).

However, Cl is not present on the Pd(0) NPs surface. The
alkali metal ions may interact with the Pd NPs resulting in the
site separation. This effect can explain the observed enhance-
ment of MBE selectivity.

DRIFT Spectroscopy of CO Adsorption (DRIFT CO). Figure
9 shows the DRIFT spectra of adsorbed CO for the MN100
starting material and catalysts. Bands corresponding to terminal
Pd-CO species are observed in the range 2000 to 2250
em™.***" The strong vibration is observed at 1900 cm™ in all
the materials and may be attributed to the HPS support, which
overlaps with doubly and triply bridging carbonyls and prevents
their observation.

As can be seen from Figure 9, after exposure to CO and
purging with He, almost all the Pd catalysts (the exception is
0.7%-Pd/MN100-K-3-R) contain bands at 2165 and 2228
cm™!, which can be attributed to formation of Pd* carbonyl
species™). Interestingly, the Pd**-CO band is red-shifted to
2191 cm™! for the sample 0.7%-Pd/MN100-K-3-R, suggesting

the presence of carbonyls Pd**~CO™ and a stronger Pd—K
interaction induced by reductive treatment.”

Besides, in many cases two additional bands are observed at
2040 and 2076 cm ™" which may be attributed to CO adsorbing
the Pd NPs or Pd(0) clusters.”****° Hence, some samples
present both Pd(0) and Pd*" sites. It is noteworthy that for the
sample reduced with hydrogen directly in the DRIFT cell at a
temperature of 300 °C, the existence of the band at 2040 cm™
is likely due to the formation of bigger Pd NPs or clusters™ in
comparison with the neighboring band at 2076 cm™'. This
observation is in good agreement with the data of XPS and
HAADF STEM study showing the formation of Pd NPs with
higher mean diameter after the gas-phase reduction in H, flow
at 300 °C in comparison with the in situ reduction.

4. CONCLUSIONS

The effect of alkali metal dopants (NaOH and KOH) on Pd
NPs stabilized within hyper-cross-linked polystyrene (Pd/
MN100 catalyst) used in the partial hydrogenation of MBY
was studied. The addition of NaOH and KOH to the Pd/
MN100 catalyst increases both the activity (ca. 1.7 times) and
selectivity to MBE (up to ca. 99.5%) and reduces the reaction
induction period. Characterization of the catalysts suggests that
the alkali metal hydroxides at low concentrations facilitate the
transformation of the Pd** residues into Pd(0), the latter being
the active catalytic species. The alkali metal ions also increase
the selectivity of the partial hydrogenation of MBY to MBE due
to their presence on the Pd NPs surfaces as confirmed by
HRTEM-EDX. K and Na may interact with the surface of
PdNPs resulting in the so-called “site separation effect” which
changes the adsorption of reactants. However, at high
concentrations the alkali metal ions block the majority of
catalytically active sites resulting in a significant decrease of
activity.
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Figure 9. DRIFT spectra of adsorbed CO on the MN100 starting material and catalysts. IR spectra were recorded after exposure to CO at 10 °C for

S min followed by treatment with He (100 mL/min, 10 °C, 10 min).
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