5 research outputs found
Association of Single Nucleotide Polymorphisms in the IL-18 Gene with Production of IL-18 Protein by Mononuclear Cells from Healthy Donors
IL-18 has proinflammatory effects and participates in both innate and adaptive cellular and humoral immunity. A number of SNPs that influence IL-18 production are found in the gene promoter region. We investigated the association of SNPs in the IL-18 promoter at −607 and −137 with the level of IL-18 protein production by PBMC from healthy donors from Southwestern Siberia. The genetic distribution of these SNPs in the promoter site was established by PCR. IL-18 protein production was determined by ELISA. Our results showed that PBMC from donors carrying allele 137C have lower levels of both spontaneous and LPS-stimulated IL-18 production. In contrast, PBMC from donors carrying allele 607A showed significant increases in spontaneous and stimulated IL-18 production compared to wild type. Our study suggests that the SNPs −607 and −137 in the promoter region of the IL-18 gene influence the level of IL-18 protein production by PBMC from healthy donors in Southwestern Siberia
Антигенные свойства изолята коронавируса SARS-CoV-2/human/RUS/Nsk-FRCFTM-1/202, выделенного от пациента в Новосибирске
Objective: isolation of coronavirus SARS-CoV-2 from clinical sample of patient with COVID-19 in Novosibirsk; obtaining a purified and inactivated viral antigen and study of its antigenic properties. Materials and methods: virus isolation was carried out in Vero cell culture from nasopharyngeal swab positive on SARS-CoV-2 RNA. The efficiency of SARSCoV-2 replication in cell culture was assessed on the appearance of cytopathic effect (CPE) and the presence of viral RNA in cultural medium with reverse transcription – polymerase chain reaction (RT-PCR). Purification, concentration and inactivation of the viral preparation were carried out according to standard methods. The purity of the purified preparation and the profile of viral proteins were determined by electrophoresis in 10% polyacrylamide gel (PAG) with the addition of sodium dodecyl sulfate (SDS). The presence and specificity of viral proteins were detected using COVID-19 convalescent’s sera with enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results: SARS-CoV-2/human/ RUS/Nsk-FRCFTM-1/2020 isolate was obtained after passage on Vero cells from a virus-containing clinical sample. A purified, concentrated, inactivated, whole-virion antigen was obtained. It contains three structural proteins: glycoprotein S (approximately 200 kDa), nucleoprotein N (48 kDa), and matrix protein M (20-25 kDa). All viral proteins were detected with serum antibodies of COVID-19 convalescents. Conclusion: SARS-CoV-2 coronavirus can be isolated in Vero cell culture. The antigenic specificity of the three structural viral proteins (S, N, and M) is preserved in the purified inactivated viral preparation. The inactivated whole-virion antigen of SARS-CoV-2/human/RUS/Nsk-FRCFTM-1/2020 isolate can be used to study the antigenic immunomodulating properties of viral proteins, to obtain immune sera of laboratory animals, and also as a component of test systems for the detection of specific antibodies with ELISA and immunoblotting.Цель: изоляция коронавируса SARS-CoV-2 из образцов носоглоточных мазков, положительных на наличие РНК SARS-CoV-2, получение инактивированного цельновирионного антигена и изучение его антигенных свойств. Материалы и методы: изоляцию вируса проводили на культуре клеток Vero из вируссодержащего образца клинического материала (мазок из носоглотки). Эффективность репликации вируса SARS-CoV-2 на культуре клеток оценивали по динамике появления цитопатического действия и наличию вирусной РНК при анализе культуральной жидкости методом обратной транскрипции – полимеразной цепной реакции. Очистку, концентрацию и инактивацию вирусного препарата проводили по стандартной методике. Степень чистоты очищенного препарата и профиль вирусных белков определяли методом электрофореза в 10% полиакриламидном геле с добавлением додецилсульфата натрия. Наличие и специфичность вирусных белков выявляли с помощью сывороток крови реконвалесцентов с диагнозом «COVID-19» методами иммуноферментного анализа и иммуноблоттинга. Результаты: из вируссодержащего клинического образца был выделен изолят SARS-CoV-2/human/RUS/ Nsk-FRCFTM-1/2020 и получен очищенный, концентрированный, инактивированный цельновирионный антиген, содержащий три структурных белка – гликопротеин S (примерно 200 кДа), нуклеопротеин N (48 кДа) и матриксный М (20-25 кДа), выявляемые антителами сывороток крови реконвалесцентов с диагнозом COVID-19. Заключение: показана возможность изоляции коронавируса SARS-CoV-2 на культуре клеток Vero. В очищенном вирусном препарате, инактивированном в лизирующем растворе, сохраняется антигенная специфичность трех структурных вирусных белков (S, N, и М), выявляемых антителами сывороток крови реконвалесцентов с диагнозом COVID-19. Инактивированный цельновирионный антиген изолята SARS-CoV-2/human/ RUS/Nsk-FRCFTM-1/2020 может быть использован для изучения антигенных иммуномодулирующих свойств вирусных белков, получения иммунных сывороток лабораторных животных, а также в качестве компонента тест-систем для выявления специфичных антител методом ИФА и иммуноблоттинга
Recommended from our members
Fast tracking tool selection for sustainability decisions
Decision making frequently entails the selection and application of assessment tools. For sustainability decisions there are a plethora of tools available for environmental assessment, yet no established and clear approach to determine which tools are appropriate and resource efficient for application. Here we present an extensive inventory of tools and a novel taxonomic method which enables efficient, effective tool selection to improve decision making for policymakers and managers. The tool selection methodology follows four main phases based on the divergence-convergence logic; a scoping phase, cataloguing phase, selection phase and validation phase. This approach combines elements of data-driven analysis with participatory techniques for stakeholder engagement to achieve buy-in and to ensure efficient management of progress and agile course correction when needed. It builds on the current limited range and scope of approaches to tool selection, and is flexible and Artificial Intelligence-ready in order to facilitate more rapid integration and uptake. Using the food system as a case study, we demonstrate how practitioners can use available input variables and desired output metrics to select the most appropriate tools to manage sustainability risks, with the approach having wide applicability to other sectors.This work was funded by the Centre for Environment, Fisheries, and Aquaculture Science (Cefas), an agency within the UK Department for Environment, Food and Rural Affairs (Defra) under the OneFood programme. D.F.W. was funded by a Henslow Fellowship at Murray Edwards College, University of Cambridge. A.P.C. was funded by a Henslow Fellowship at Downing College, University of Cambridge. D.C.A. was supported by a Dawson Fellowship at St Catharine’s College, University of Cambridge
The First Water-Soluble Hexarhenium Cluster Complexes with a Heterocyclic Ligand Environment: Synthesis, Luminescence, and Biological Properties
The hexarhenium cluster complexes
with benzotriazolate apical ligands [{Re<sub>6</sub>(μ<sub>3</sub>-Q)<sub>8</sub>}(BTA)<sub>6</sub>]<sup>4–</sup> (Q = S, Se;
BTA = benzotriazolate ion) were obtained by the reaction of [{Re<sub>6</sub>(μ<sub>3</sub>-Q)<sub>8</sub>}(OH)<sub>6</sub>]<sup>4–</sup> with molten 1<i>H</i>-BTA (1<i>H</i>-benzotriazole). The clusters were crystallized as potassium salts
and characterized by X-ray single-crystal diffraction, elemental analyses,
and UV–vis and luminescence spectroscopy. In addition, their
cellular uptake and toxicity were evaluated. It was found that both
clusters exhibited luminescence with high lifetimes and quantum yield
values; they were taken up by the cells illuminating them under UV
irradiation and, at the same time, did not exhibit acute cytotoxic
effects
Antigenic properties of sARs-CoV-2/human/RUs/nsk-FRCFtM-1/2020 coronavirus isolate from a patient in novosibirsk
Objective: isolation of coronavirus SARS-CoV-2 from clinical sample of patient with COVID-19 in Novosibirsk; obtaining a purified and inactivated viral antigen and study of its antigenic properties. Materials and methods: virus isolation was carried out in Vero cell culture from nasopharyngeal swab positive on SARS-CoV-2 RNA. The efficiency of SARSCoV-2 replication in cell culture was assessed on the appearance of cytopathic effect (CPE) and the presence of viral RNA in cultural medium with reverse transcription – polymerase chain reaction (RT-PCR). Purification, concentration and inactivation of the viral preparation were carried out according to standard methods. The purity of the purified preparation and the profile of viral proteins were determined by electrophoresis in 10% polyacrylamide gel (PAG) with the addition of sodium dodecyl sulfate (SDS). The presence and specificity of viral proteins were detected using COVID-19 convalescent’s sera with enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results: SARS-CoV-2/human/ RUS/Nsk-FRCFTM-1/2020 isolate was obtained after passage on Vero cells from a virus-containing clinical sample. A purified, concentrated, inactivated, whole-virion antigen was obtained. It contains three structural proteins: glycoprotein S (approximately 200 kDa), nucleoprotein N (48 kDa), and matrix protein M (20-25 kDa). All viral proteins were detected with serum antibodies of COVID-19 convalescents. Conclusion: SARS-CoV-2 coronavirus can be isolated in Vero cell culture. The antigenic specificity of the three structural viral proteins (S, N, and M) is preserved in the purified inactivated viral preparation. The inactivated whole-virion antigen of SARS-CoV-2/human/RUS/Nsk-FRCFTM-1/2020 isolate can be used to study the antigenic immunomodulating properties of viral proteins, to obtain immune sera of laboratory animals, and also as a component of test systems for the detection of specific antibodies with ELISA and immunoblotting