49 research outputs found

    Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial

    Get PDF
    Objective: Assess ustekinumab efficacy (week 24/week 52) and safety (week 16/week 24/week 60) in patients with active psoriatic arthritis (PsA) despite treatment with conventional and/or biological anti-tumour necrosis factor (TNF) agents. Methods: In this phase 3, multicentre, placebo-controlled trial, 312 adults with active PsA were randomised (stratified by site, weight (≤100 kg/>100 kg), methotrexate use) to ustekinumab 45 mg or 90 mg at week 0, week 4, q12 weeks or placebo at week 0, week 4, week 16 and crossover to ustekinumab 45 mg at week 24, week 28 and week 40. At week 16, patients with <5% improvement in tender/swollen joint counts entered blinded early escape (placebo→45 mg, 45 mg→90 mg, 90 mg→90 mg). The primary endpoint was ≥20% improvement in American College of Rheumatology (ACR20) criteria at week 24. Secondary endpoints included week 24 Health Assessment Questionnaire-Disability Index (HAQ-DI) improvement, ACR50, ACR70 and ≥75% improvement in Psoriasis Area and Severity Index (PASI75). Efficacy was assessed in all patients, anti-TNF-naïve (n=132) patients and anti-TNF-experienced (n=180) patients. Results: More ustekinumab-treated (43.8% combined) than placebo-treated (20.2%) patients achieved ACR20 at week 24 (p<0.001). Significant treatment differences were observed for week 24 HAQ-DI improvement (p<0.001), ACR50 (p≤0.05) and PASI75 (p<0.001); all benefits were sustained through week 52. Among patients previously treated with ≥1 TNF inhibitor, sustained ustekinumab efficacy was also observed (week 24 combined vs placebo: ACR20 35.6% vs 14.5%, PASI75 47.1% vs 2.0%, median HAQ-DI change −0.13 vs 0.0; week 52 ustekinumab-treated: ACR20 38.9%, PASI75 43.4%, median HAQ-DI change −0.13). No unexpected adverse events were observed through week 60. Conclusions: The interleukin-12/23 inhibitor ustekinumab (45/90 mg q12 weeks) yielded significant and sustained improvements in PsA signs/symptoms in a diverse population of patients with active PsA, including anti-TNF-experienced PsA patients

    Applying science in practice: the optimization of biological therapy in rheumatoid arthritis

    Get PDF
    Most authorities recommend starting biological agents upon failure of at least one disease-modifying agent in patients with rheumatoid arthritis. However, owing to the absence of head-to-head studies, there is little guidance about which biological to select. Still, the practicing clinician has to decide. This review explores the application of published evidence to practice, discussing the goals of treatment, the (in) ability to predict individual responses to therapy, and the potential value of indirect comparisons. We suggest that cycling of biological agents, until remission is achieved or until the most effective agent for that individual patient is determined, deserves consideration in the current stage of knowledge

    Rheumatoid arthritis - treatment: 180. Utility of Body Weight Classified Low-Dose Leflunomide in Japanese Rheumatoid Arthritis

    Get PDF
    Background: In Japan, more than 20 rheumatoid arthritis (RA) patients died of interstitial pneumonia (IP) caused by leflunomide (LEF) were reported, but many of them were considered as the victims of opportunistic infection currently. In this paper, efficacy and safety of low-dose LEF classified by body weight (BW) were studied. Methods: Fifty-nine RA patients were started to administrate LEF from July 2007 to July 2009. Among them, 25 patients were excluded because of the combination with tacrolimus, and medication modification within 3 months before LEF. Remaining 34 RA patients administered 20 to 50 mg/week of LEF were followed up for 1 year and enrolled in this study. Dose of LEF was classified by BW (50 mg/week for over 50 kg, 40 mg/week for 40 to 50 kg and 20 to 30 mg/week for under 40 kg). The average age and RA duration of enrolled patients were 55.5 years old and 10.2 years. Prednisolone (PSL), methotrexate (MTX) and etanercept were used in 23, 28 and 2 patients, respectively. In case of insufficient response or adverse effect, dosage change or discontinuance of LEF were considered. Failure was defined as dosages up of PSL and MTX, or dosages down or discontinuance of LEF. Last observation carried forward method was used for the evaluation of failed patients at 1 year. Results: At 1 year after LEF start, good/ moderate/ no response assessed by the European League Against Rheumatism (EULAR) response criteria using Disease Activity Score, including a 28-joint count (DAS28)-C reactive protein (CRP) were showed in 14/ 10/ 10 patients, respectively. The dosage changes of LEF at 1 year were dosage up: 10, same dosage: 5, dosage down: 8 and discontinuance: 11 patients. The survival rate of patients in this study was 23.5% (24 patients failed) but actual LEF continuous rate was 67.6% (11 patients discontinued) at 1 year. The major reason of failure was liver dysfunction, and pneumocystis pneumonia was occurred in 1 patient resulted in full recovery. One patient died of sepsis caused by decubitus ulcer infection. DAS28-CRP score was decreased from 3.9 to 2.7 significantly. Although CRP was decreased from 1.50 to 0.93 mg/dl, it wasn't significant. Matrix metalloproteinase (MMP)-3 was decreased from 220.0 to 174.2 ng/ml significantly. Glutamate pyruvate transaminase (GPT) was increased from 19 to 35 U/l and number of leukocyte was decreased from 7832 to 6271 significantly. DAS28-CRP, CRP, and MMP-3 were improved significantly with MTX, although they weren't without MTX. Increase of GPT and leukopenia were seen significantly with MTX, although they weren't without MTX. Conclusions: It was reported that the risks of IP caused by LEF in Japanese RA patients were past IP history, loading dose administration and low BW. Addition of low-dose LEF is a potent safe alternative for the patients showing unsatisfactory response to current medicines, but need to pay attention for liver function and infection caused by leukopenia, especially with MTX. Disclosure statement: The authors have declared no conflicts of interes

    The impact of biologics and tofacitinib on cardiovascular risk factors and outcomes in patients with rheumatic disease: a systematic literature review

    Get PDF
    Introduction Rheumatic diseases are autoimmune, inflammatory diseases often associated with cardiovascular (CV) disease, a major cause of mortality in these patients. In recent years, treatment with biologic and targeted synthetic disease-modifying anti-rheumatic drugs (DMARDs), either as monotherapy or in combination with other drugs, have become the standard of treatment. In this systematic literature review, we evaluated the effect of treatment with biologic or tofacitinib on the CV risk and outcomes in these patients. Methods A systematic search was performed in MEDLINE, Embase, the Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews for articles reporting on CV risk and events in patients with rheumatic disease treated with a biologic agent or tofacitinib. Articles identified were subjected to two levels of screening. Articles that passed the first level based on title and abstract were assessed on full-text evaluation. The quality of randomized clinical trials was assessed by Jadad scoring system and the quality of the other studies and abstracts was assessed using the Downs and Black instrument. The data extracted included study design, baseline patient characteristics, and measurements of CV risk and events. Results Of the 5722 articles identified in the initial search, screening yielded 105 unique publications from 90 unique studies (33 clinical trials, 39 prospective cohort studies, and an additional 18 retrospective studies) that reported CV risk outcomes. A risk of bias analysis for each type of report indicated that they were of good or excellent quality. Importantly, despite some limitations in data reported, there were no indications of significant increase in adverse CV events or risk in response to treatment with the agents evaluated. Conclusions Treatment with biologic or tofacitinib appears to be well-tolerated with respect to CV outcomes in these patients

    Experimental and Numerical Modeling of Screws Used for Rigid Internal Fixation of Mandibular Fractures

    No full text
    Experimental and numerical methods are used to explore the stresses generated around bone screws used in rigid internal fixation of mandibular fractures. These results are intended to aid in decisions concerning both the design and the use of these bone screws. A finite element (FE) model of a human mandible is created with a fixated fracture in the parasymphyseal region. The mandibular model is anatomically loaded, and the forces exerted by the fixation plate onto the simplified screws are obtained and transferred to another finite element submodel of a screw implant embedded in a trilaminate block with material properties of cortical and cancellous bone. The stress in the bone surrounding the screw implant is obtained and compared for different screw configurations. The submodel analyses are further compared to and validated with simple axial experimental and numerical screw pull-out models. Results of the screw FE analysis (FEA) submodel show that a unicortical screw of 2.6 mm major diameter and 1.0 mm pitch will cause less bone damage than a bicortical screw of 2.3 mm major diameter and 1.0 mm pitch. The results of this study suggest that bicortical drilling can be avoided by using screws of a larger major diameter

    Modelling of irradiation-induced hardening in metals using dislocation dynamics

    No full text
    A new simulation technique (three-dimensional dislocation dynamics) enabling the capture of a hardening effect in metals due to irradiation is reported. When bombarded with high-energy particles, metals accrue internal damage. In irradiated Pd, for example, damage takes the form of interstitial loops. Such loops are nano-sized and typically have a high number density. The stress field of a loop is given from dislocation theory. It is shown here the hardening is due to the elastic interaction of gliding dislocations with a high number or spatially dispersed interstitial loops. Results are found to correlate well with experiments

    Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations

    No full text
    When irradiated, metals undergo significant internal damage accumulation and degradation of mechanical properties. Damage takes the form of a high number density of nanosize defect clusters (stacking-fault tetrahedrons (SFTs) or interstitial loops). The alteration of mechanical properties is manifested in a hardening behavior and localized plastic deformation in defect-free channels. This work uses discrete dislocation dynamics (DD) to capture these effects. It sets the framework for the elastic interaction between gliding dislocations and defect clusters and details a scheme for loop unfaulting and absorption into dislocations. Here, it is shown that SFTs represents weaker pinning points for dislocation motion than parent dislocation loops. It is also shown that appreciable yield drop can be attributed to high density of defects decorating the dislocations. Strong obstacles cause dislocations in Cu to continually double cross slip causing the formation of defect-free channels. Finally, the correlation between yield stress increase and defect number density is in excellent agreement with the experiment

    Multiscale modelling of plastic flow localization in irradiated materials

    No full text
    The irradiation of metals by energetic particles causes significant degradation of the mechanical properties(1,2), most notably an increased yield stress and decreased ductility, often accompanied by plastic flow localization. Such effects limit the lifetime of pressure vessels in nuclear power plants(3), and constrain the choice of materials for fusion-based alternative energy sources(4). Although these phenomena have been known for many years(1), the underlying fundamental mechanisms and their relation to the irradiation field have not been clearly demonstrated. Here we use three-dimensional multiscale simulations of irradiated metals to reveal the mechanisms underlying plastic flow localization in defect-free channels. We observe dislocation pinning by irradiation-induced clusters of defects, subsequent unpinning as defects are absorbed by the dislocations, and cross-slip of the latter as the stress is increased. The width of the plastic flow channels is limited by the interaction among opposing dislocation dipole segments and the remaining defect clusters
    corecore