10 research outputs found
Ekpyrotic collapse with multiple fields
A scale invariant spectrum of isocurvature perturbations is generated during
collapse in the scaling solution in models where two or more fields have steep
negative exponential potentials. The scale invariance of the spectrum is
realised by a tachyonic instability in the isocurvature field. We show that
this instability is due to the fact that the scaling solution is a saddle point
in the phase space. The late time attractor is identified with a single field
dominated ekpyrotic collapse in which a steep blue spectrum for isocurvature
perturbations is found. Although quantum fluctuations do not necessarily to
disrupt the classical solution, an additional preceding stage is required to
establish classical homogeneity.Comment: 13 pages, 1 figur
Curvature perturbations from ekpyrotic collapse with multiple fields
A scale-invariant spectrum of isocurvature perturbations is generated during
collapse in the ekpyrotic scaling solution in models where multiple fields have
steep negative exponential potentials. The scale invariance of the spectrum is
realized by a tachyonic instability in the isocurvature field. This instability
drives the scaling solution to the late time attractor that is the old
ekpyrotic collapse dominated by a single field. We show that the transition
from the scaling solution to the single field dominated ekpyrotic collapse
automatically converts the initial isocurvature perturbations about the scaling
solution to comoving curvature perturbations about the late-time attractor. The
final amplitude of the comoving curvature perturbation is determined by the
Hubble scale at the transition.Comment: 15 pages, 3 figures, a reference added, to be published in CQG, a
remark on the comoving density perturbation correcte
Cosmic Bounces and Cyclic Universes
Cosmological models involving a bounce from a contracting to an expanding
universe can address the standard cosmological puzzles and generate
"primordial" density perturbations without the need for inflation. Some such
models, in particular the ekpyrotic and cyclic models that we focus on, fit
rather naturally into string theory. We discuss a number of topics related to
these models: the reasoning that leads to the ekpyrotic phase, the predictions
for upcoming observations, the differences between singular and non-singular
models of the bounce as well as the predictive and explanatory power offered by
these models.Comment: 28 pages. Contribution to the CQG focus issue on String Cosmolog
A smooth bouncing cosmology with scale invariant spectrum
We present a bouncing cosmology which evolves from the contracting to the
expanding phase in a smooth way, without developing instabilities or
pathologies and remaining in the regime of validity of 4d effective field
theory. A nearly scale invariant spectrum of perturbations is generated during
the contracting phase by an isocurvature scalar with a negative exponential
potential and then converted to adiabatic. The model predicts a slightly blue
spectrum, n_S >~ 1, no observable gravitational waves and a high (but model
dependent) level of non-Gaussianities with local shape. The model represents an
explicit and predictive alternative to inflation, although, at present, it is
clearly less compelling.Comment: 20 pages, 1 fig. v2: references added, JCAP published versio
Scale-invariance in expanding and contracting universes from two-field models
We study cosmological perturbations produced by the most general
two-derivative actions involving two scalar fields, coupled to Einstein
gravity, with an arbitrary field space metric, that admit scaling solutions.
For contracting universes, we show that scale-invariant adiabatic perturbations
can be produced continuously as modes leave the horizon for any equation of
state parameter . The corresponding background solutions are unstable,
which we argue is a universal feature of contracting models that yield
scale-invariant spectra. For expanding universes, we find that nearly
scale-invariant adiabatic perturbation spectra can only be produced for , and that the corresponding scaling solutions are attractors. The
presence of a nontrivial metric on field space is a crucial ingredient in our
results.Comment: 23 pages, oversight in perturbations calculation corrected,
conclusions for expanding models modifie
Generalizing Galileons
The Galileons are a set of terms within four-dimensional effective field
theories, obeying symmetries that can be derived from the dynamics of a
3+1-dimensional flat brane embedded in a 5-dimensional Minkowski Bulk. These
theories have some intriguing properties, including freedom from ghosts and a
non-renormalization theorem that hints at possible applications in both
particle physics and cosmology. In this brief review article, we will summarize
our attempts over the last year to extend the Galileon idea in two important
ways. We will discuss the effective field theory construction arising from
co-dimension greater than one flat branes embedded in a flat background - the
multiGalileons - and we will then describe symmetric covariant versions of the
Galileons, more suitable for general cosmological applications. While all these
Galileons can be thought of as interesting four-dimensional field theories in
their own rights, the work described here may also make it easier to embed them
into string theory, with its multiple extra dimensions and more general
gravitational backgrounds.Comment: 16 pages; invited brief review article for a special issue of
Classical and Quantum Gravity. Submitted to CQ
Supergravity based inflation models: a review
In this review, we discuss inflation models based on supergravity. After
explaining the difficulties in realizing inflation in the context of
supergravity, we show how to evade such difficulties. Depending on types of
inflation, we give concrete examples, particularly paying attention to chaotic
inflation because the ongoing experiments like Planck might detect the tensor
perturbations in near future. We also discuss inflation models in Jordan frame
supergravity, motivated by Higgs inflation.Comment: 30 pages, invited review for Classical and Quantum Gravity, published
versio
Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe
A new and powerful probe of the origin and evolution of structures in the
Universe has emerged and been actively developed over the last decade. In the
coming decade, non-Gaussianity, i.e., the study of non-Gaussian contributions
to the correlations of cosmological fluctuations, will become an important
probe of both the early and the late Universe. Specifically, it will play a
leading role in furthering our understanding of two fundamental aspects of
cosmology and astrophysics: (i) the physics of the very early universe that
created the primordial seeds for large-scale structures, and (ii) the
subsequent growth of structures via gravitational instability and gas physics
at later times. To date, observations of fluctuations in the Cosmic Microwave
Background (CMB) and the Large-Scale Structure of the Universe (LSS) have
focused largely on the Gaussian contribution as measured by the two-point
correlations (or the power spectrum) of density fluctuations. However, an even
greater amount of information is contained in non-Gaussianity and a large
discovery space therefore still remains to be explored. Many observational
probes can be used to measure non-Gaussianity, including CMB, LSS,
gravitational lensing, Lyman-alpha forest, 21-cm fluctuations, and the
abundance of rare objects such as clusters of galaxies and high-redshift
galaxies. Not only does the study of non-Gaussianity maximize the science
return from a plethora of present and future cosmological experiments and
observations, but it also carries great potential for important discoveries in
the coming decade.Comment: 8 pages, 1 figure. Science White Paper submitted to the Cosmology and
Fundamental Physics (CFP) Science Frontier Panel of the Astro 2010 Decadal
Survey (v2,v3,v4) More co-signers and references adde
Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe
A new and powerful probe of the origin and evolution of structures in the Universe has emerged and been actively developed over the last decade. In the coming decade, non-Gaussianity, i.e., the study of non-Gaussian contributions to the correlations of cosmological fluctuations, will become an important probe of both the early and the late Universe. Specifically, it will play a leading role in furthering our understanding of two fundamental aspects of cosmology and astrophysics: (i) the physics of the very early universe that created the primordial seeds for large-scale structures, and (ii) the subsequent growth of structures via gravitational instability and gas physics at later times. To date, observations of fluctuations in the Cosmic Microwave Background (CMB) and the Large-Scale Structure of the Universe (LSS) have focused largely on the Gaussian contribution as measured by the two-point correlations (or the power spectrum) of density fluctuations. However, an even greater amount of information is contained in non-Gaussianity and a large discovery space therefore still remains to be explored. Many observational probes can be used to measure non-Gaussianity, including CMB, LSS, gravitational lensing, Lyman-alpha forest, 21-cm fluctuations, and the abundance of rare objects such as clusters of galaxies and high-redshift galaxies. Not only does the study of non-Gaussianity maximize the science return from a plethora of present and future cosmological experiments and observations, but it also carries great potential for important discoveries in the coming decade
Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe
A new and powerful probe of the origin and evolution of structures in the Universe has emerged and been actively developed over the last decade. In the coming decade, non-Gaussianity, i.e., the study of non-Gaussian contributions to the correlations of cosmological fluctuations, will become an important probe of both the early and the late Universe. Specifically, it will play a leading role in furthering our understanding of two fundamental aspects of cosmology and astrophysics: (i) the physics of the very early universe that created the primordial seeds for large-scale structures, and (ii) the subsequent growth of structures via gravitational instability and gas physics at later times. To date, observations of fluctuations in the Cosmic Microwave Background (CMB) and the Large-Scale Structure of the Universe (LSS) have focused largely on the Gaussian contribution as measured by the two-point correlations (or the power spectrum) of density fluctuations. However, an even greater amount of information is contained in non-Gaussianity and a large discovery space therefore still remains to be explored. Many observational probes can be used to measure non-Gaussianity, including CMB, LSS, gravitational lensing, Lyman-alpha forest, 21-cm fluctuations, and the abundance of rare objects such as clusters of galaxies and high-redshift galaxies. Not only does the study of non-Gaussianity maximize the science return from a plethora of present and future cosmological experiments and observations, but it also carries great potential for important discoveries in the coming decade