108 research outputs found

    Increased leptin and A-FABP levels in relapsing and progressive forms of MS

    Get PDF
    BACKGROUND: Leptin and adipocyte-fatty acid binding protein (A-FABP) are produced by white adipose tissue and may play a role in chronic inflammation in Multiple Sclerosis (MS). To assess leptin and A-FABP in relapsing and progressive forms of MS. METHODS: Adipokine levels were measured in untreated adult relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), primary progressive MS (PPMS) and Healthy control (HC). Pediatric-onset MS (POMS) and pediatric healthy controls (PHC) were also assessed. Leptin and A-FABP levels were measured in serum by ELISA. Groups were compared using linear mixed-effects model. RESULTS: Excluding two patients with Body Mass Index (BMI) > 50, a significant difference in leptin level was found between RRMS and HC controlling for age (p = 0.007), SPMS and HC controlling for age alone (p = 0.002), or age and BMI (p = 0.007). A-FABP levels were higher in SPMS than HC (p = 0.007), controlling for age and BMI. Differences in A-FABP levels between POMS and PHC was observed after controlling for age (p = 0.019), but not when BMI was added to the model (p = 0.081). CONCLUSION: Leptin and A-FABP levels are highest in SPMS compared to HC, suggesting a role in pathogenesis of this disease subtype. A-FABP levels are increased in POMS patients and may play a role in the early stages of disease

    Critical Role of the Programmed Death-1 (PD-1) Pathway in Regulation of Experimental Autoimmune Encephalomyelitis

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is mediated by autoantigen-specific T cells dependent on critical costimulatory signals for their full activation and regulation. We report that the programmed death-1 (PD-1) costimulatory pathway plays a critical role in regulating peripheral tolerance in murine EAE and appears to be a major contributor to the resistance of disease induction in CD28-deficient mice. After immunization with myelin oligodendrocyte glycoprotein (MOG) there was a progressive increase in expression of PD-1 and its ligand PD-L1 but not PD-L2 within the central nervous system (CNS) of mice with EAE, peaking after 3 wk. In both wild-type (WT) and CD28-deficient mice, PD-1 blockade resulted in accelerated and more severe disease with increased CNS lymphocyte infiltration. Worsening of disease after PD-1 blockade was associated with a heightened autoimmune response to MOG, manifested by increased frequency of interferon γ–producing T cells, increased delayed-type hypersensitivity responses, and higher serum levels of anti-MOG antibody. In vivo blockade of PD-1 resulted in increased antigen-specific T cell expansion, activation, and cytokine production. Interestingly, PD-L2 but not PD-L1 blockade in WT animals also resulted in disease augmentation. Our data are the first demonstration that the PD-1 pathway plays a critical role in regulating EAE

    Galectin-1 Deactivates Classically Activated Microglia and Protects from Inflammation-Induced Neurodegeneration

    Get PDF
    SummaryInflammation-mediated neurodegeneration occurs in the acute and the chronic phases of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Classically activated (M1) microglia are key players mediating this process. Here, we identified Galectin-1 (Gal1), an endogenous glycan-binding protein, as a pivotal regulator of M1 microglial activation that targets the activation of p38MAPK-, CREB-, and NF-κB-dependent signaling pathways and hierarchically suppresses downstream proinflammatory mediators, such as iNOS, TNF, and CCL2. Gal1 bound to core 2 O-glycans on CD45, favoring retention of this glycoprotein on the microglial cell surface and augmenting its phosphatase activity and inhibitory function. Gal1 was highly expressed in the acute phase of EAE, and its targeted deletion resulted in pronounced inflammation-induced neurodegeneration. Adoptive transfer of Gal1-secreting astrocytes or administration of recombinant Gal1 suppressed EAE through mechanisms involving microglial deactivation. Thus, Gal1-glycan interactions are essential in tempering microglial activation, brain inflammation, and neurodegeneration, with critical therapeutic implications for MS

    Differential engagement of Tim-1 during activation can positively or negatively costimulate T cell expansion and effector function

    Get PDF
    It has been suggested that T cell immunoglobulin mucin (Tim)-1 expressed on T cells serves to positively costimulate T cell responses. However, crosslinking of Tim-1 by its ligand Tim-4 resulted in either activation or inhibition of T cell responses, thus raising the issue of whether Tim-1 can have a dual function as a costimulator. To resolve this issue, we tested a series of monoclonal antibodies specific for Tim-1 and identified two antibodies that showed opposite functional effects. One anti–Tim-1 antibody increased the frequency of antigen-specific T cells, the production of the proinflammatory cytokines IFN-γ and IL-17, and the severity of experimental autoimmune encephalomyelitis. In contrast, another anti–Tim-1 antibody inhibited the generation of antigen-specific T cells, production of IFN-γ and IL-17, and development of autoimmunity, and it caused a strong Th2 response. Both antibodies bound to closely related epitopes in the IgV domain of the Tim-1 molecule, but the activating antibody had an avidity for Tim-1 that was 17 times higher than the inhibitory antibody. Although both anti–Tim-1 antibodies induced CD3 capping, only the activating antibody caused strong cytoskeletal reorganization and motility. These data indicate that Tim-1 regulates T cell responses and that Tim-1 engagement can alter T cell function depending on the affinity/avidity with which it is engaged
    corecore