6 research outputs found

    Conference Highlights of the 16th International Conference on Human Retrovirology: HTLV and Related Retroviruses, 26–30 June 2013, Montreal, Canada

    Full text link

    Molecular characterization of HTLV-1 gp46 glycoprotein from health carriers and HAM/TSP infected individuals

    No full text
    BACKGROUND: Human T-cell Leukemia Virus type 1 (HTLV-1) is the etiological agent of tropical spastic paraparesis/HTLV-associated myelopathy (HAM/TSP) that can be identified in around 0.25%-3.8% of the infected population. Disease progression can be monitored by the proviral load and may depend on genetic factors, however, it is not well understood why some HTLV-1 infected people develop the disease while others do not. The present study attempts to assess the molecular diversity of gp46 glycoprotein in HAM/TSP patients and Health Carrier (HC) individuals. METHODS: Blood samples were collected from 10 individuals, and DNA was extracted from PBMCs to measure the HTLV-1 proviral load. The gp46 coding sequences were amplified PCR, cloned and sequenced. The molecular characterization was performed using bioinformatics tools. RESULTS: The median HTLV-1 proviral load of HC (n = 5) and HAM/TSP (n = 5) patients was similar (average 316,227 copies/106 PBMCs). The gp46 molecular characterization of 146 clones (70 HC and 76 HAM/TSP) revealed an overall diversity, within HC and HAM/TSP clones, of 0.4% and 0.6%, respectively. Five frequent mutations were detected among groups (HAM/TSP and HC clone sequences). A single amino acid (aa) substitution (S35L) was exclusive for the HC group, and three gp46 substitutions (F14S, N42H, G72S) were exclusive for the HAM/TSP group. The remaining frequent mutation (V247I) was present in both groups (p = 0.0014). The in silico protein analysis revealed that the mutated alleles F14S and N42H represent more hydrophilic and flexible protein domains that are likely to be less antigenic. The Receptor Binding Domain is quite variable in the HAM/TSP group. Two other domains (aa 53-75 and 175-209) that contain multiple linear T-cell epitopes showed genetic diversity in both HAM/TSP and HC groups. Further analysis revealed 27 and 13 T-cell epitopes for class I HLA alleles and class II HLA alleles, when analyzing the entire gp46. CONCLUSIONS: The most common gp46 mutations were not associated clinical status because they were found in only one individual, except for the V247I mutation, that was found at viral clones from HAM/TSP ad HC individuals. Because of this, we cannot associate any of the gp46 found mutations with the clinical profil

    Structural Transformation to Attain Responsible BIOSciences (STARBIOS2): protocol for a Horizon 2020 funded European multicenter project to promote responsible research and innovation

    No full text
    Background: Promoting Responsible Research and Innovation (RRI) is a major strategy of the “Science with and for Society” work program of the European Union’s Horizon 2020 Framework Programme for Research and Innovation. RRI aims to achieve a better alignment of research and innovation with the values, needs, and expectations of society. The RRI strategy includes the “keys” of public engagement, open access, gender, ethics, and science education. The Structural Transformation to Attain Responsible BIOSciences (STARBIOS2) project promotes RRI in 6 European research institutions and universities from Bulgaria, Germany, Italy, Slovenia, Poland, and the United Kingdom, in partnership with a further 6 institutions from Brazil, Denmark, Italy, South Africa, Sweden, and the United States.Objective: The project aims to attain RRI structural change in 6 European institutions by implementing action plans (APs) and developing APs for 3 non-European institutions active in the field of biosciences; use the implementation of APs as a learning process with a view to developing a set of guidelines on the implementation of RRI; and develop a sustainable model for RRI in biosciences.Methods: The project comprises interrelated research and implementation designed to achieve the aforementioned specific objectives. The project is organized into 6 core work packages and 5 supporting work packages. The core work packages deal with the implementation of institutional APs in 6 European institutions based on the structural change activation model. The supporting work packages include technical assistance, learning process on RRI-oriented structural change, monitoring and assessment, communication and dissemination, and project management.Results: The project is funded by Horizon 2020 and will run for 4 years (May 2016-April 2020). As of June 2018, the initial phase has been completed. The participating institutions have developed and approved APs and commenced their implementation. An observation tool has been launched by the Technical Assistance Team to collect information from the implementation of APs; the Evaluation & Assessment team has started monitoring the advancement of the project. As part of the communication and dissemination strategy, a project website, a Facebook page, and a Twitter account have been launched and are updated periodically. The International Scientific Advisory Committee has been formed to advise on the reporting and dissemination of the project’s results.Conclusions: In the short term, we anticipate that the project will have a considerable impact on the organizational processes and structures, improving the RRI uptake in the participating institutions. In the medium term, we expect to make RRI-oriented organizational change scalable across Europe by developing guidelines on RRI implementation and an RRI model in biosciences. In the long term, we expect that the project would help increase the ability of research institutions to make discoveries and innovations in better alignment with societal needs and values

    Structural transformation to attain responsible BIOSciences (STARBIOS2)

    No full text
    Promoting Responsible Research and Innovation (RRI) is a major strategy of the "Science with and for Society" work program of the European Union's Horizon 2020 Framework Programme for Research and Innovation. RRI aims to achieve a better alignment of research and innovation with the values, needs, and expectations of society. The RRI strategy includes the "keys" of public engagement, open access, gender, ethics, and science education. The Structural Transformation to Attain Responsible BIOSciences (STARBIOS2) project promotes RRI in 6 European research institutions and universities from Bulgaria, Germany, Italy, Slovenia, Poland, and the United Kingdom, in partnership with a further 6 institutions from Brazil, Denmark, Italy, South Africa, Sweden, and the United States
    corecore