15 research outputs found

    Schistosoma mansoni venom allergen-like proteins:Phylogenetic relationships, stage-specific transcription and tissue localization as predictors of immunological cross-reactivity

    Get PDF
    O artigo encontra-se disponível para download no site do Editor.Submitted by Ana Maria Fiscina Sampaio ([email protected]) on 2019-07-15T18:23:01Z No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)Approved for entry into archive by Ana Maria Fiscina Sampaio ([email protected]) on 2019-07-15T18:39:31Z (GMT) No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5)Made available in DSpace on 2019-07-15T18:39:31Z (GMT). No. of bitstreams: 1 Farias, L.P. Schistosoma mansoni venom...2019.pdf: 1118803 bytes, checksum: 1ddd953840abbbd5d56675c8d6c4fa6e (MD5) Previous issue date: 2019Welcome Trust (UK) (WT084273/Z/07/Z) to KFH, Fundação Butantan, Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil) to LPF and LLC (2012/23124-4), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to LCCL and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, and by fellowships from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil) to LPF (2008/57946-5) and HKF (2007/07685-8) and from CNPq to MIK (160861/2017-9). We thank Dra. Eliana Nakano and Ms. Patricia A. Miyasato for supplying the parasite stages and to Alexsander Seixas de Souza for confocal microscopy (FAPESP 00/11624-5) imaging support, all from Instituto Butantan, Brazil.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil / Universidade de São Paulo. Pós-Graduação Interunidades em Biotecnologia. São Paulo, SP, Brasil.Leiden University Medical Centre. Center for Proteomics and Metabolomics. RC Leiden, The Netherlands.Leiden University Medical Centre. Department of Parasitology. RC Leiden, The Netherlands.Instituto Butantan. Centro de Biotecnologia. São Paulo, SP, Brasil.Aberystwyth University. Institute of Biological. Environmental and Rural Sciences. Aberystwyth, UK.Schistosoma mansoni venom allergen-like proteins (SmVALs) are part of a diverse protein superfamily partitioned into two groups (group 1 and group 2). Phylogenetic analyses of group 1 SmVALs revealed that members could be segregated into subclades (A-D); these subclades share similar gene expression patterns across the parasite lifecycle and immunological cross-reactivity. Furthermore, whole-mount in situ hybridization demonstrated that the phylogenetically, transcriptionally and immunologically-related SmVAL4, 10, 18 and 19 (subclade C) were all localized to the pre-acetabular glands of immature cercariae. Our results suggest that SmVAL group 1 phylogenetic relationships, stage-specific transcriptional profiles and tissue localization are predictive of immunological cross-reactivity

    Antigenic epitope targets of rhesus macaques self-curing from Schistosoma mansoni infection

    Get PDF
    The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans

    Table_6_Antigenic epitope targets of rhesus macaques self-curing from Schistosoma mansoni infection.xlsx

    No full text
    The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans.</p

    Table_3_Antigenic epitope targets of rhesus macaques self-curing from Schistosoma mansoni infection.xlsx

    No full text
    The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans.</p

    Presentation_3_Antigenic epitope targets of rhesus macaques self-curing from Schistosoma mansoni infection.pptx

    No full text
    The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans.</p

    Table_2_Antigenic epitope targets of rhesus macaques self-curing from Schistosoma mansoni infection.xlsx

    No full text
    The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans.</p

    Presentation_1_Antigenic epitope targets of rhesus macaques self-curing from Schistosoma mansoni infection.pptx

    No full text
    The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans.</p

    Table_1_Antigenic epitope targets of rhesus macaques self-curing from Schistosoma mansoni infection.xlsx

    No full text
    The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans.</p

    Table_4_Antigenic epitope targets of rhesus macaques self-curing from Schistosoma mansoni infection.xlsx

    No full text
    The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans.</p
    corecore