49 research outputs found

    Ser81 Survivin Induced Protein Kinase A (PKA)-dependent Phosphatidylinositol 3-kinase (PI3K) Activity

    Get PDF
    BACKGROUND: Our previous report showed that phosphorylated-survivin at Ser81 induces survivin back loop to activate protein kinase A (PKA) in the cytoprotection mechanism. Activated PKA could possibly induce the cytoprotection via Phosphatydilinositol 3-kinase (PI3K). Therefore our current study was conducted to investigate the possibility of survivin-PKA-PI3K signaling pathway.METHODS: Viral productions by BOSC23 cells of Survivin, Antisense Survivin (Survivin-AS) and Ser81Ala mutant (Survivin-S81A) in pMSCV-IRES-GFP vector with cytomegalovirus (CMV) promoter were conducted. L929 cells were pretreated with/without PKI 6-22 amide and infected with viral particle of Survivin, Survivin-AS, Survivin-S81A or vector only. Cells were harvested, lysed and immunoprecipitated with anti-PI3K (p85) antibody and immunoblotted to detect PI3K (p85) and phospho-(Tyr) p85 PI3K. To confirm PI3K activation, PI3K Activity Assay was conducted by using phosphoinositide fraction containing PtdIns(4,5)P2 and [32P]ATP.RESULTS: Immunoblot and PI3K activity results showed similar results. Upon infection of virus with survivin, a markedly increased level of tyrosine phosphorylation of p85 PI3K or PI3K activity in L929 cells was seen. Low levels of tyrosine phosphorylation of p85 PI3K or PI3K activity were observed for Survivin-AS and Survivin-S81A-viral-infected L929 cells. With higher concentrations of Survivin-viral-infection, levels of tyrosine phosphorylation of p85 PI3K or PI3K activity in L929 cells were gradually increased. However, when L929 cells were pretreated with PKI 6-22 amide, prior to Survivin-viral-infection, level of tyrosine phosphorylation level of p85 PI3K or PI3K activity was detected much lower.CONCLUSION: Our result suggest that Ser81 Survivin play role in inducing PI3K activation and the Survivin-PI3K signaling pathway was PKA-dependent.KEYWORDS: Ser81, Survivin, PKA, PI3K, L92

    Daxx, a Novel Fas-Binding Protein That Activates JNK and Apoptosis

    Get PDF
    The Fas cell surface receptor induces apoptosis upon receptor oligomerization. We have identified a novel signaling protein, termed Daxx, that binds specifically to the Fas death domain. Overexpression of Daxx enhances Fas-mediated apoptosis and activates the Jun N-terminal kinase (JNK) pathway. A C-terminal portion of Daxx interacts with the Fas death domain, while a different region activates both JNK and apoptosis. The Fas-binding domain of Daxx is a dominant-negative inhibitor of both Fas-induced apoptosis and JNK activation, while the FADD death domain partially inhibits death but not JNK activation. The Daxx apoptotic pathway is sensitive to both Bcl-2 and dominant-negative JNK pathway components and acts cooperatively with the FADD pathway. Thus, Daxx and FADD define two distinct apoptotic pathways downstream of Fas

    Transformation by Rho exchange factor oncogenes is mediated by activation of an integrin-dependent pathway.

    Get PDF
    Constitutive activation of growth factor receptor signaling pathways leads to uncontrolled growth, but why tumor cells become anchorage independent is less clear. The fact that integrins transmit signals required for cell growth suggests that constitutive activation of steps downstream from integrins mediates anchorage independence. Since the small GTPase Rho may mediate integrin signal transduction, the effects of serum and the Rho nucleotide exchange factor oncogenes dbl and lbc on cell growth and signaling pathways were examined. Our data show that these oncogenes induce anchorage-independent but serum-dependent growth and stimulation of signaling pathways. These results show, therefore, that anchorage-independent growth results from constitutive activation of integrin-dependent signaling events. They also support the view that Rho is a functionally important mediator of integrin signaling

    Changes in membrane lipids drive increased endocytosis following Fas ligation

    Get PDF
    Once activated, some surface receptors promote membrane movements that open new portals of endocytosis, in part to facilitate the internalization of their activated complexes. The prototypic death receptor Fas (CD95/Apo1) promotes a wave of enhanced endocytosis that induces a transient intermixing of endosomes with mitochondria in cells that require mitochondria to amplify death signaling. This initiates a global alteration in membrane traffic that originates from changes in key membrane lipids occurring in the endoplasmic reticulum (ER). We have focused the current study on specific lipid changes occurring early after Fas ligation. We analyzed the interaction between endosomes and mitochondria in Jurkat T cells by nanospray-Time-of-flight (ToF) Mass Spectrometry. Immediately after Fas ligation, we found a transient wave of lipid changes that drives a subpopulation of early endosomes to merge with mitochondria. The earliest event appears to be a decrease of phosphatidylcholine (PC), linked to a metabolic switch enhancing phosphatidylinositol (PI) and phosphoinositides, which are crucial for the formation of vacuolar membranes and endocytosis. Lipid changes occur independently of caspase activation and appear to be exacerbated by caspase inhibition. Conversely, inhibition or compensation of PC deficiency attenuates endocytosis, endosome-mitochondria mixing and the induction of cell death. Deficiency of receptor interacting protein, RIP, also limits the specific changes in membrane lipids that are induced by Fas activation, with parallel reduction of endocytosis. Thus, Fas activation rapidly changes the interconversion of PC and PI, which then drives enhanced endocytosis, thus likely propagating death signaling from the cell surface to mitochondria and other organelles

    The Mitogen-activated Protein Kinase Phosphatases PAC1, MKP-1, and MKP-2 Have Unique Substrate Specificities and Reduced Activity in Vivo toward the ERK2 sevenmaker Mutation

    Get PDF
    Mitogen-activated protein (MAP) kinases can be grouped into three structural families, ERK, JNK, and p38, which are thought to carry out unique functions within cells. We demonstrate that ERK, JNK, and p38 are activated by distinct combinations of stimuli in T cells that simulate full or partial activation through the T cell receptor. These kinases are regulated by reversible phosphorylation on Tyr and Thr, and the dual specific phosphatases PAC1 and MKP-1 previously have been implicated in the in vivo inactivation of ERK or of ERK and JNK, respectively. Here we characterize a new MAP kinase phosphatase, MKP-2, that is induced in human peripheral blood T cells with phorbol 12-myristate 13-acetate and is expressed in a variety of nonhematopoietic tissues as well. We show that the in vivo substrate specificities of individual phosphatases are unique. PAC1, MKP-2, and MKP-1 recognize ERK and p38, ERK and JNK, and ERK, p38, and JNK, respectively. Thus, individual MAP kinase phosphatases can differentially regulate the potential for cross-talk between the various MAP kinase pathways. A hyperactive allele of ERK2 (D319N), analogous to the Drosophila sevenmaker gain-of-function mutation, has significantly reduced sensitivity to all three MAP kinase phosphatases in vivo

    Expression Cloning of lsc , a Novel Oncogene with Structural Similarities to the Dbl Family of Guanine Nucleotide Exchange Factors

    Get PDF
    In a screen for genes with oncogenic potential expressed by the murine B6SUtA1 myeloid progenitor cell line, we isolated a 2. 5-kilobase pair cDNA whose expression causes strong morphological transformation and deregulated proliferation of NIH 3T3 cells. The transforming cDNA encodes a truncated protein (designated Lsc) with a region of sequence similarity to the product of the lbc oncogene. This region includes the tandem Dbl homology and pleckstrin homology domains that are hallmarks of the Dbl-like proteins, a family of presumptive or demonstrated guanine nucleotide exchange factors that act on Rho family GTPases. Lsc requires intact Dbl homology and pleckstrin homology domains for its oncogenic activity. The transforming activity of Lsc in NIH 3T3 cells is reduced by cotransfection with p190 (a GTPase activating protein for Rho family GTPases) and the Rho family dominant-negative mutants RhoA(19N), CDC42(17N), and Rac1(17N). These results indicate a role for the Rho family of GTPases in mediating the transforming activity of Lsc and are consistent with the exchange specificities that have been attributed to Dbl family members. The lsc gene is expressed in a variety of tissues and is particularly abundant in hemopoietic tissues (thymus, spleen, and bone marrow). Lsc is a member of a growing family of proteins that may function as activators of Rho family GTPases in a developmental or tissue-specific manner

    c-Fos as a Proapoptotic Agent in TRAIL-Induced Apoptosis in Prostate Cancer Cells

    Get PDF
    Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)/Apo-2L promotes apoptosis in cancer cells while sparing normal cells. Although many cancers are sensitive to TRAIL-induced apoptosis, some evade the proapoptotic effects of TRAIL. Therefore, differentiating molecular mechanisms that distinguish between TRAIL-sensitive and TRAIL-resistant tumors are essential for effective cancer therapies. Here, we show that c-Fos functions as a proapoptotic agent by repressing the antiapoptotic molecule c-FLIP(L). c-Fos binds the c-FLIP(L) promoter, represses its transcriptional activity, and reduces c-FLIP(L) mRNA and protein levels. Therefore, c-Fos is a key regulator of c-FLIP(L), and activation of c-Fos determines whether a cancer cell will undergo cell death after TRAIL treatment. Strategies to activate c-Fos or inhibit c-FLIP(L) may potentiate TRAILbased proapoptotic therapies

    Ras Interaction with Two Distinct Binding Domains in Raf-1 5 Be Required for Ras Transformation

    Get PDF
    Although Raf-1 is a critical Ras effector target, how Ras mediates Raf-1 activation remains unresolved. Raf-1 residues 55-131 define a Ras-binding domain essential for Raf-1 activation. Therefore, our identification of a second Ras-binding site in the Raf-1 cysteine-rich domain (residues 139-184) was unexpected and suggested a more complex role for Ras in Raf-1 activation. Both Ras recognition domains preferentially associate with Ras-GTP. Therefore, mutations that impair Ras activity by perturbing regions that distinguish Ras-GDP from Ras-GTP (switch I and II) may disrupt interactions with either Raf-1-binding domain. We observed that mutations of Ras that impaired Ras transformation by perturbing its switch I (T35A and E37G) or switch II (G60A and Y64W) domain preferentially diminished binding to Raf-1-(55-131) or the Raf-1 cysteine-rich domain, respectively. Thus, these Ras-binding domains recognize distinct Ras-GTP determinants, and both may be essential for Ras transforming activity. Finally, since Ha-Ras T35A and E37G mutations prevent Ras interaction with full-length Raf-1, we suggest that Raf-Cys is a cryptic binding site that is unmasked upon Ras interaction with Raf-1-(55-131)

    A novel caspase 8 selective small molecule potentiates TRAIL-induced cell death

    Get PDF
    Recombinant soluble TRAIL and agonistic antibodies against TRAIL receptors (DR4 and DR5) are currently being created for clinical cancer therapy, due to their selective killing of cancer cells and high safety characteristics. However, resistance to TRAIL and other targeted therapies is an important issue facing current cancer research field. An attractive strategy to sensitize resistant malignancies to TRAIL-induced cell death is the design of small molecules that target and promote caspase 8 activation. For the first time, we describe the discovery and characterization of a small molecule that directly binds caspase 8 and enhances its activation when combined with TRAIL, but not alone. The molecule was identified through an in silico chemical screen for compounds with affinity for the caspase 8 homodimer’s interface. The compound was experimentally validated to directly bind caspase 8, and to promote caspase 8 activation and cell death in single living cells or population of cells, upon TRAIL stimulation. Our approach is a proof-of-concept strategy leading to the discovery of a novel small molecule that not only stimulates TRAIL-induced apoptosis in cancer cells, but may also provide insights into the structure-function relationship of caspase 8 homodimers as putative targets in cancer
    corecore