1,579 research outputs found

    The electromagnetic field near a dielectric half-space

    Get PDF
    We compute the expectations of the squares of the electric and magnetic fields in the vacuum region outside a half-space filled with a uniform non-dispersive dielectric. This gives predictions for the Casimir-Polder force on an atom in the `retarded' regime near a dielectric. We also find a positive energy density due to the electromagnetic field. This would lead, in the case of two parallel dielectric half-spaces, to a positive, separation-independent contribution to the energy density, besides the negative, separation-dependent Casimir energy. Rough estimates suggest that for a very wide range of cases, perhaps including all realizable ones, the total energy density between the half-spaces is positive.Comment: Latex2e, IOP macros, 15 pages, 2 eps figure

    Stabilization of internal space in noncommutative multidimensional cosmology

    Get PDF
    We study the cosmological aspects of a noncommutative, multidimensional universe where the matter source is assumed to be a scalar field which does not commute with the internal scale factor. We show that such noncommutativity results in the internal dimensions being stabilizedComment: 8 pages, 1 figure, to appear in IJMP

    Horizon Problem Remediation via Deformed Phase Space

    Full text link
    We investigate the effects of a special kind of dynamical deformation between the momenta of the scalar field of the Brans-Dicke theory and the scale factor of the FRW metric. This special choice of deformation includes linearly a deformation parameter. We trace the deformation footprints in the cosmological equations of motion when the BD coupling parameter goes to infinity. One class of the solutions gives a constant scale factor in the late time that confirms the previous result obtained via another approach in the literature. This effect can be interpreted as a quantum gravity footprint in the coarse grained explanation. The another class of the solutions removes the big bang singularity, and the accelerating expansion region has an infinite temporal range which overcomes the horizon problem. After this epoch, there is a graceful exiting by which the universe enters in the radiation dominated era.Comment: 13 pages, 2 figures, to appear in GER

    The cosmological implications of a fundamental length: a DSR inspired de-Sitter spacetime

    Full text link
    We study a de-Sitter model in the framework of a Deformed Special Relativity (DSR) inspired structure. The effects of this framework appear as the existence of a fundamental length which influences the behavior of the scale factor. We show that such a deformation can either be used to control the unbounded growth of the scale factor in the present accelerating phase or account for the inflationary era in the early evolution of the universe.Comment: 10 pages, 3 figures, to appear in JCA

    Identification and Prioritization of Critical Risk Factors of Commercial and Recreational Complex Building Projects: A Delphi Study Using the TOPSIS Method

    Get PDF
    Construction development of Commercial and Recreational Complex Building Projects (CRCBPs) is one of the community needs of many developing countries. Since the implementation of these projects is usually very costly, identifying and evaluating their Critical Risk Factors (CRFs) are of significant importance. Therefore, the current study aims to identify and prioritize CRFs of CRCBPs in the Iranian context. A descriptive-survey method was used in this research; the statistical population, selected based on the purposive sampling method, includes 30 construction experts with hands-on experience in CRCBPs. A questionnaire related to the risk identification stage was developed based on a detailed study of the research literature and also using the Delphi survey method; 82 various risks were finally identified. In order to confirm the opinions of experts in identifying the potential risks, Kendall’s coefficient of concordance was used. In the first stage of data analysis, qualitative evaluation was performed by calculating the severity of risk effect and determining the cumulative risk index, based on which 25 CRFs of CRCBPs were identified for more accurate evaluation. At this stage, the identified CRFs were evaluated based on multi-criteria decision-making techniques and using the TOPSIS technique. Results show that the ten CRFs of CRCBPs are external threats from international relations, exchange rate changes, bank interest rate fluctuations, traffic licenses, access to skilled labor, changes in regional regulations, the condition of adjacent buildings, fluctuations and changes in inflation, failure to select a suitable and qualified consultant, and employer’s previous experiences and records. Obviously, the current study’s results and findings can be considered by CRCBPs in both the private and public sectors for proper effective risk identification, evaluation, and mitigatio

    Model identification and accuracy for estimation of suspended sediment load

    Get PDF
    In the present study, three widely used modeling approaches: (1) sediment rating curve (SRC) and optimized OSRC, (2) machine learning models (ML) (random forest (RF) and Dagging-RF (DA-RF)) and (3) the semi-physically based soil and water assessment tool (SWAT) are applied to predict suspended sediment load (Qs) at the Talar watershed in Iran. Various graphical and quantitative methods were used to evaluate the goodness of fit. Results indicated that the RF model had the best prediction power in the training phase, while the dagging-RF hybrid algorithm outperformed all other models in the validation phase. The OSRC, RF and DA-RF had ‘very good’ performances based on the NSE in the validation phase, SRC showed ‘good’ performance, while the predicted values using SWAT were ‘satisfactory’. Our results suggest that the OSRC and ML models are more suitable for prediction of Qs in study catchments with poor data availability.</p

    Bianchi type I cyclic cosmology from Lie-algebraically deformed phase space

    Full text link
    We study the effects of noncommutativity, in the form of a Lie-algebraically deformed Poisson commutation relations, on the evolution of a Bianchi type I cosmological model with a positive cosmological constant. The phase space variables turn out to correspond to the scale factors of this model in xx, yy and zz directions. According to the conditions that the structure constants (deformation parameters) should satisfy, we argue that there are two types of noncommutative phase space with Lie-algebraic structure. The exact classical solutions in commutative and type I noncommutative cases are presented. In the framework of this type of deformed phase space, we investigate the possibility of building a Bianchi I model with cyclic scale factors in which the size of the universe in each direction experiences an endless sequence of contractions and re-expansions. We also obtain some approximate solutions for the type II noncommutative structure by numerical methods and show that the cyclic behavior is repeated as well. These results are compared with the standard commutative case, and similarities and differences of these solutions are discussed.Comment: 13 pages, to appear in PRD, typos corrected, Refs. adde

    Analysis of the BqDq(Dq)PB_q\to D_q(D_q^*) P and BqDq(Dq)VB_q\to D_q(D_q^*) V decays within the factorization approach in QCD

    Get PDF
    Using the factorization approach and considering the contributions of the current-current, QCD penguin and electroweak penguin operators at the leading approximation, the decay amplitudes and decay widths of BqDq(Dq)PB_q\to D_q(D_q^*) P and BqDq(Dq)VB_q\to D_q(D_q^*) V transitions, where q=u,d,sq=u,d,s and P and V are pseudoscalar and vector mesons, are calculated in terms of the transition form factors of the BqDqB_q\to D_{q} and BqDqB_q\to D^{*}_{q}. Having computed those form factors in three-point QCD sum rules, the branching fraction for these decays are also evaluated. A comparison of our results with the predictions of the perturbative QCD as well as the existing experimental data is presented.Comment: 18 Pages and 9 Table

    Predictive factors of short-term survival from acute myocardial infarction in early and late patients in Isfahan and Najafabad, Iran

    Get PDF
    Background: Cardiovascular disease (CVD) is the primary cause of mortality in the world and Iran. The aim of this study was to determine the prognostic factors of short-term survival from acute myocardial infarction (AMI) in early and late patients in the Najafabad and Isfahan County, Iran. Methods: This hospital-based cohort study was conducted using the hospital registry of 1999-2009 in Iran. All patients (n = 14426) with an AMI referred to hospitals of Isfahan and Najafabad were investigated. To determine prognostic factors of short-term (28-days) survival in early and late patients, unadjusted and adjusted hazard ratio (HR) was calculated using univariate and multivariate Cox regression. Results: The short-term (28-day) survival rate of early and late patients was 96.6 and 89.4 (P < 0.001), respectively. In 80.0 of early and 79.3 of late patients, mortality occurred during the first 7 days of disease occurrence. HR of death was higher in women in the two groups; it was 1.97 in early patients was confidence interval (CI) 95%: 1.32-2.92 and 1.35 in late patients (CI 95%: 1.19-1.53) compared to men. HR of death had a rising trend with the increasing of age in the two groups. Conclusion: Short-term survival rate was higher in early patients than in late patients. In addition, case fatality rate (CFR) of AMI in women was higher than in men. In both groups, sex, age, an atomic location of myocardial infarction based on the International Classification of Disease, Revision 10 (ICD10), cardiac enzymes, and clinical symptoms were significant predictors of survival in early and late patients following AMI. © 2016, Isfahan University of Medical Sciences(IUMS). All rights reserved
    corecore