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Abstract

Using the factorization approach and considering the contributions of the current-
current, QCD penguin and electroweak penguin operators at the leading approxima-
tion, the decay amplitudes and decay widths of B, — Dy(Dy)P and B, — Dy(Dy)V
transitions, where ¢ = u,d,s and P and V are pseudoscalar and vector mesons, are
calculated in terms of the transition form factors of the B, — D, and By — Dj. Hav-
ing computed those form factors in three-point QCD sum rules, the branching fraction
for these decays are also evaluated. A comparison of our results with the predictions
of the perturbative QCD as well as the existing experimental data is presented.
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1 Introduction

With the chances that a lot of B, mesons will be produced in B factories [1, 2], it would
be possible to check the two-body non-leptonic charmed decay modes B, — D,(D;)P and
B, — D,(D;)V. Analyzing of such type decays could give valuable information about the
origin of the CP violation, hadronic flavor changing neutral currents, test of the standard
model (SM), constraints on new physic parameters as well as strong interactions among the
participating particles which provides valuable tests of the QCD factorization framework.

Theoretically, analyzing of the two-body B-decay amplitudes have been started using the
framework of so called "naive factorization” [3-7]. This method for some decay channels
is replaced by QCD factorization [8,9] since it could not predict direct CP asymmetries
in those decay modes. First, the QCD factorization approach had been applied for the
simplest charmless B — 7w and B — wK decays [8,10-13] then extended to the vector
and exotic mesons in final states [14-17] and 1 or i’ with a pseudoscalar or vector kaon
[18]. In [19-21], decay modes of By meson are discussed. A comprehensive study of the
exclusive hadronic B-meson decays into the final states containing two pseudoscalar mesons
(PP) or a pseudoscalar and a vector meson (PV') is discussed in [22]. The Charmless anti-
Bs; — V'V decays has also been analyzed in QCD factorization in [23]. The hard-scattering
kernels relevant to the negative-helicity decay amplitude in B decays to two vector mesons
are calculated in [24] in the same framework. The two-body hadronic decays of B mesons
into pseudoscalar and axial vector mesons have been studied within the framework of QCD
factorization in [25]. A detailed study of charmless two-body B decays into final states
involving two vector mesons (V V) or two axial-vector mesons (AA) or one vector and one
axial-vector meson (V A) has also been done within the framework of QCD factorization
in [26]. Considering the contributions of both current-current and penguin operators, the
amplitudes and branching ratios are recently estimated at the leading approximation for
B. — B*P, BV in [27].

In the present work, taking into account the contributions of the current-current, QCD
penguin and electroweak penguin operators at the leading approximation, we describe the
charmed decays B, — Dy(D})P and B, — D,(D;)V in the framework of the QCD factor-
ization method. First, using the factorization method, we calculate the decay amplitudes
and decay widths of these decays in terms of the transition form factors of the B, — D, and
B, — D;. Having calculated these transition form factors in the framework of the QCD
sum rules in our previous works in [28,29], we calculate the branching ratio of these decays.
In order to estimate the approximate branching ratios and to have a sense of the order
of amplitudes, we make a rough approximation, i.e. at the leading order of a,. Within
this approximation, the hard-scattering kernel functions become very simple and equal to
unity [27]. In this approximation, the long-distance interactions between the P(V') and
By, — Dy(D;) system could be neglected. The higher order o, corrections might not be
small, but calculation of these contributions is not as easy as the light systems in final state
and needs much more efforts. Hence, for obtaining the exact results on the considered tran-
sitions, those effects should be encountered in the future works. There are several methods
in which such type contributions can be studied, QCD Factorization [8-10, 18,22, 24|, Per-
turbative QCD [30] and Soft-Collinear Effective Theory [31,32]. For more detail analysis
of NNLO corrections to B — light — light systems and higher order QCD corrections to
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the charmless B decays see also [33-38]. Note that, some of the considered decays in this
paper have been analyzed in the framework of the perturbative QCD in (PQCD) [30] and
for some of them, we have some experimental data [39].

The outline of the paper is as follows: In section 2, we calculate the decay amplitudes
and decay widths for B, — Dy(D;)P and B, — D,(D;)V transitions. Finally, section 3 is
devoted to the numerical analysis, a comparison of our results with the predictions of the
PQCD as well as the existing experimental data and discussion.

2 Decay amplitudes and decay widths

In the present section, we study the decay amplitudes and decay widths for B, — D,(D;)P
and B, — D,(D;)V decays, where ¢ = u,d,s, P=m,K, D, and V = K~, DZ, (¢ =d,s).
At the quark level, the effective Hamiltonian for B, — Dy(D;)w(K, K*) is given by

Gr
V2

Here O} and O are quark operators and are given by
Of = (gui)v-a(Gbj)v-a, 05 = (qiu)v-a(Ebi)v-a, (2)

where ¢ = d,s and (f1g2)via = @y*(1 & 75)q2. However, the effective Hamiltonian for
By — Dy(D}) Dy and B, — D,(Dy) Dy, at the quark level can be written as

H.fy {VaVi (GO} + C20%) } - (1)

q

Gr
V2

Here O,, are quark operators and are given by

Heyy {VcbV* (C105 + C203) + Vi Vi Z Cn0, } (3)

0¢ = (dici)v—a(Sbj)v—a, O35 = (qicj)v_a(Cbi)v_a,
Osisp = (¢hbi)v_a Xo(@05)v—(+)a, Owey = (€bj)v-naX(G%)v—(+)a; (4)
07(9) = ((Zbi)V—A Zq %eq(Qij)VJr(—)Aa 08(10) = (Q;z{bj)V—A Zq %eq@qu’)vﬂ—)Aa

where }°, sums over ¢ = u,d,c,s,b and ¢ and j are color indices. The operators O,
and O, are called the current-current operators, Os...0g are QCD penguin operators and
O~...0qp are called the electroweak penguin operators.

The Wilson coefficients C), have been calculated in different schemes [40-43]. In this
paper we will use consistently the naive dimensional regularization (NDR) scheme. The
values of C,, at u ~ my, with the next-to-leading order (NLO) QCD corrections are given
by [40-43]

C, = 1.117, C, = —0.257,

Cy = 0.017, Cy = —0.044,

Cs = 0.011, Cs = —0.056, (5)
C; = —1x107%, O3 = 5x107%,

Cy = —0.010, Cio = 0.002.
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The decay width and the branching ratio of the nonleptonic process B, — D,(D*,)M,
where M stands for the P or V mesons, is given by:

. 1
DB, = D(D")M) = o A [N ey )
BT(Bq - Dq(D*q>M> = TBqF(Bq - Dq(D*q)M) (6)

where, \(z,y,2) = 2% + y? + 2% — 2wy — 222 — 2y2 is usual triangle function.
To obtain the decay width, we should calculate the amplitude A. This amplitude is ob-

tained using the factorization method and the definition of the related matrix elements in
terms of form factors for the B, — D, and B, — D weak transitions as:

< Dy(P)evu(1 = 45| By(p) >= (0 + 1) f """ (@) + (0= 1), 27 (g%, (7)

20" ()

* _ —<4J1 *U, Q

< D0e) e | Bylp) >= — s (8)
*( _ [ By—=Dg, o *

< D;(0,e) |25 | By(p) > = —i[fy" " (¢*)(mp; +mp,)e;
By—D} By—D}
) , fs' N (d?) /
Ja 0 N Jox Jo N Tk _ 9
e G LR T e G LTI R )

where ¢? is transferred momentum square, ¢> = (p — p’)?, and p and p’ are momentum of
the initial and final meson states, respectively.

We obtain the A as following:

for B, — D,P (P =m,K) and B, — D,D,:

GF By y—D (s
ABd(s)ﬁDd(s)P — == Vc V*, a Jai d(s) d(s) mz :
\/§ b Vg l.fP 1 ( P)
ABU Pul = Zﬁ Vcquq/ [CLl fP FlBu D“(m?;) + asg fDu FlB“ P(szu)}
N , Grp By—D % %
ABq Dqu = Zﬁ fDq/ Fl q q(mZDq/) [‘/Cb‘/cq’ ay — Wb‘/tq’ (CL4 + aqo
+Ry(as + as))],
(10)
where,
By—P By—P B,—P
FP M i) = (m, —mip) [y () + mi, f2 N (),

2
2Tan/

(11)

(my —me)(my +me)’
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for B, — D,K* and B, — D,D;, :

* 2 m * *G —
ABas)—=Da) K™ — M ViV ay (p -6*K*)ffd(s) Das) (m2..),
V2
— * G * * — K
AP BT = 7; Vo Vs (p -EK*)PCLI M free f2 7P (M) — ag fp By (m%u)},

2 mpr, fD;, Gr

ABq—>DqD;/ = \/i (p ,EB;/) fq—>Dq (m%;,)[‘/cb‘/:q’ ap — thVtZ/(CM + 0,10)],
(12)
where,
By—V
FEV ) = 50 md)ma, +my) + £ (md)(mp, —my) + 2
q q (mBq +mv>
(13)
for B, — D;P(P =m,K) ,and B, — D;D:
AP Paot = Gr VeV a1 fp (p €p-) qu_)DZ(S)(m?D)a
V2
* G * * u iy —
APTIE = =2 VaViy (P 2pe) lan fo By ) = 20y Sy 7 (i)
—D;D G * Bq_’D; * *
ABq Dqu = —TZ fDq' (p .8D;) F2 (m%q/)[‘/;b‘/;q/ a; — V;fb‘/;q’ (CL4 +CL10
+R,) (a5 + as))], (14)
with
/ 2m2 !
Rq/ — — Dq (15)

and for By — D;K* and B, — D; D> :
q

Bd(s —D* s K* _ mK* fK*GF * Bd(S)HD;(s) 2 * *
A7 s = ZT VeV a1 | F3 (mic-) (€p-€k+)
Ba(sy— D Bas)= Dy 2

+F, (M) (p epe)(p £he) — iF; (mK*)EuumE?‘w}Sﬂp”pi)*} :

L D*K* G * u . * *
ABU DuK - ZTZ VCqus ( al mK* fK* |:F3 Du (mi(*> (5D* ’6K*)
w— D% * * . 1 By—D5, LT, o
+E7 TP mie) (0 €50 i) —iF TN (i) ot s B0 D |

Fay mpe for [FP () (e ) + FPF () (0 23 )(p )

. w—K* 2 *U KV P o
_ZFS (mD*)g,ul/pogD*gK*p PK~* :| )7

4
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By—D:*D*, Grp By—Djg o _x
APTIRG — im fo, [BT ) (e
By—Dj * * Bq—Dj * *U o
+Fy (m%;) (p -5D;;)(p <Dy, ) — iy (m%);,)guupogpé,g[);pppm
X [‘/cb‘/;]’ ay — thVth (ag + a)l, (16)
where
Fymme,) = (mp, +mv)fo"(md,),
B,—V;
Be—Vi, 2/, (mdy)
F (mV2> )
(mBq —+ mVl)
—2f " (m,)
By—V1
F 7 (miy) : (17)

(mBq + mvl)

In the above expressions, the *, £, e stand for the polarization of the Dy, DZ, and K*
mesons, respectively. The quantities a;, are given in terms of the coefficient C;,

a; = CZ + LCZ'_H (Z = Odd); a; = CZ + LC’i_l (Z = even), (18)
NC NC
where ¢ runs from ¢ = 1,...,10 and N, is number of color in QCD. In the above equation,
the a; and ay are both related to the coefficients C 5, which are very large comparing
with the other Wilson coefficients, but we will keep all coefficients to get ride of further
approximation.
Now we can calculate the decay widths for B, — D,(D})P and B, — Dy(D;)V decays.
The explicit expressions for decay widths are given as follow:

F(Bd(s) - Dd(S)P(P =T, K)) = 32 7TmB |‘/;bVJq/|2 CL% f]23 \/)\(szd(s)’szd(s)’m%)
d(s)
Ba(s)—=Das
X [FyT I (), (19)
G Bu—Du (12 \]2
I'(B, — D,P(P =, K)) ?)QTchV* /| \/)‘ (m%,. mb,, mp) [al fo [FP=Pe(mb)]
+a3 fp, [FP " (mp,)]?
+2 ay az fp, fp [FP=Pe(m}) FPoP(md )] | (20)
G2 2 Bq— Dy 2 2
I'(By — DyDy) me / \/)‘ mB »MD, va IEY (me,)]

" 2
X ‘/Cb‘/cq’ a; — %b‘/f,q’ [CL4 + aig + Rq/ (CLG + ag)] , (21)
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GE

3
32 TR,

Basy—Das
X[f 0T (mi ), (22)

3
I'(Bas) = Das)K™) |V Vi |? ai f%*k(m%d(s),m%d(s),m%*)z

G%‘ |vbv* |2)\(m2Bu7 m2Du7 m%(*
C

32 Tm, 4m3;.

+ad f3 (PP ()]

~4 ay ay muc- fi- fo, FPP (i) B ()], (23)

I'(B, — D,K*)

Bl mie g (15 ni)

G2 = —_—
3fD* A(m, mi, mib. )2 (£ (mi. )P

VBy = Duby) = g v

2
X VcbVCq/ ax thV [ay + ao]

Y

G2
32 Wde( )

([F?’Bd(s)*Dd(s) (mK*)] 2 [

* * * 1
F(Bd(s) - Dd(s)K ) = Ve Vs |2 al mK*fK* (m%d(s),m%;(s),mﬁ(*ﬁ

2 2 2
)\(deM,m . M)
()
1 +3
m. mi.
Dy K
2 2 2 2
A(de(s) yMpe M)
2

(s) }
16m2,. m2.
D3, VK

4 'F4Bd(s)_’D;(s) (mi{*> 2 {

)\(szd(s) ) m2D ) m%{*)

d(s) (mK*) 2 [ 5 d(s) ]

- B s_>D* )
O mi)] [FT (md)]
Am%  m%.  mie.

2 2 2 Bas)’ d(s) )}
- * - * 2
x(de(S) de(S) mi )[ 2 me ; (25)

r Bd(s)—>D
+ | F5

r Bd(s)—>D
+|F3

_Gr
32 mmi;

D=

(B, — D:K*) = VeV X(m3, , mb,., mi.) <[a1 e free FB D (m2..)

A(mp,, mp., mi-)

+as mD;fD;FgBU_)K*(m%;)}2[ + 3]

4mi,. mie.
D* 2
+[a1 mc free By () + as mD;:szFfﬁK*(m%z)}
2 2

[A(m%uv mD;jv mK*)z}

2 2
16mp. mie-

— D7

X + [Ch s fic-Fy 77" (M)
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A(m,, mi., m%)}
2
m *) + a9 mDEfDEF?)B“_’K*(m )

)

* 2
+ag mpy fp, F " (m%u)} [

_'_ [al M= fK* F3

u~—+l)z ( 2 2
K Dy,

By—Dy, 2 By—K* 2
X |ay My freF) (m¥-) + az mp: fp: F, (mp:

)‘(m2Bua mZD;a m%(*)})
Y

2 2
Ay, M.

u

x(m%, —mp. — mi){

G

3
32 mm,
2 2 2
A(mi,, Mpg: Mpr, )

([ oy (i )

2
q 4mD;mD;,

(B, — D.D})

2 2 2 2 2 1
Mpr, fD;, )‘(mBqu Mps» Mz, )2

2 2 2 \2
)‘(mBq » MDys mD;,)

12
+|F, (M3 )
L 4 D ] [ 1(3771%); TTL%);/ }

A (m2Bq ) m2D; ’ m%);*, )

|
Bq—>D; 22
[F 4 (mDZ, )}

)‘(sz(p m%)j;’ sz*, ) }>
q

2 2
4mp-mp:,
q

_ « -2
+|F5 "(m-,) [

x(mQBq - m%; - mQD*,){

2
VoV a1 — VaVir[aa + alOH ;

G

128 mm3,  m?2,.
Ba(s) Dd(s)

(mp)]?,

I'(Bas) — DZ(S)P(P =mK)) =

Bd(s)_’DQ(s)

[

3
G%—‘ |2)‘(m23u7m2D7’17m?3)2
!

*
3 VeV, Am2
By mpx

B, — DZP(P:mK)):W g

)

—

2 |‘/cbvu*q’ |2 a% fl%)\(m2Bd(s) y M

D+ 2
x (403 mby Sy 12 ) + ad 73 [F P i)

~dar ay mpg fpfo, F2" (i) BTV md))

G2
I'(B, — D;Dy) G b A, mip, mi, )2 (B (m

3
128 TmME, Mp:

2
X ‘/cb‘/:;’ a; — V;fb‘/t;;’ [CL4 + aio -+ R;/ (CLG + ag)]’ .

D* ’m%)

(26)

d(s)

(29)

(30)
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My mg Mp+ mpo Mp, T K *(892)
139.570 493.677 £ 0.016 | 1869.62 + 0.20 | 1864.84 £+ 0.17 | 1968.49 £ 0.34 | 891.66 + 0.26
mD*i mD—*O mD*S mp+ mpgo /rn/B5
2010.27 £0.17 | 2006.97 £ 0.19 2112.3 £ 0.5 0279.2+£0.3 59279.5£0.3 5366.3 £ 0.6
Table 1: Values of the masses in MeV [39].
fx[39] fx[39] fp=(39] fpo[39] fp.[39] | fr-[44]
130.7+0.46 | 159.8 £1.84 | 222.6 £19.5 | 222.6 £19.5 | 294 £ 27 | 217+ 5
fp-+[39] f5+0[39] S+, [45] [+ [39] fo[39] | [B,[46]
230 £ 20 230 £ 20 266 £ 32 176 =42 176 =42 | 206 £ 10

Table 2: Values of the decay constants in MeV.

3 Numerical analysis

This section encompasses our numerical analysis, comparison of our results with the predic-
tions of the PQCD as well as the existing experimental data and discussion. The expressions
of the amplitudes and decay widths depict that the main input parameters entering the
expressions are Wilson coefficients presented in the section 2, elements of the CKM matrix,
leptonic decay constants, Borel parameters M? and M3 as well as the continuum thresholds
sp and s; [28,29]. In further numerical analysis, we choose the numerical values as presented
in the Tables 1, 2 and 3. The Borel mass squares M? and M3 and continuum thresholds
sp and s; are auxiliary parameters, hence the physical quantities should be independent
of them. The parameters sy and sj, are determined from the conditions that guarantees
the sum rules for form factors to have the best stability in the allowed M7 and M3 region.
The working regions for M7 and M2 as well as the values for continuum thresholds are
determined in [28,29]. Here, we choose the values sy = 35+ 5 GeV? s, = 7T+ 1 GeV?,
M =17.0+2.5 GeV? M3 =T+ 1 GeV? from those working values for auxiliary parame-
ters. The values of the form factors fi and fo;23 at different values of ¢*> which we need
in the expressions for decay widths are presented in Tables 4 and 5, respectively. Using
the expressions for total decay widths, the values of branching fractions for B, — D,P,
B, — D;P, B, — D,V and B, — D;V are found. We depict the values of the branching
ratios in Tables 6, 7, 8 and 9. Here, we should stress that, as we mentioned before, our
results depicted in the Tables are approximate results since we considered the observable

‘Vud| |VUS‘ |Vcd| ‘VCS‘ ‘Vcb‘
0.97377 £ 0.00027 | 0.2257 4 0.0021 | 0.230 £0.011 | 0.957 £0.110 | 0.0416 4 0.0006
Vs | |Vid| V| Vs
0.00431 £ 0.00030 | 0.0074 4+ 0.0008 | 0.77 £0.18 | 0.0406 £ 0.0027

Table 3: Values of the elements of the CKM matrix [39].
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only at the leading order of a,. To obtain more exact results the higher order ay correc-
tions should be taken into account. However, the presented uncertainties in the results are
belong to the uncertainties in the values of the input parameters as well as variations in
form factors which are related to the errors in determination of the auxiliary parameters
namely, Borell mass parameters M? and M2 and continuum thresholds sy and sj. These
Tables also include a comparison of our results with the existing predictions of the PQCD
as well as the experimental data. From these Tables, we see a good consistency among two
non-perturbative approaches and the experiment in order of magnitude. In many cases, the
presented results out of order of magnitude from three approaches coincide especially, when
we consider the uncertainties in the results. The best consistency between our results and
predictions of the PQCD is related to the BY — D**K¥ transition and B — D,*K*(892)F
transition shows the biggest discrepancy between two methods. Our central value predic-
tion on B® — D* KT is approximately the same as the experimental result, however, the
central experimental result on the branching ratio of BY — D**D*F depicts a big discrep-
ancy comparing that of our prediction. The presented predictions from PQCD are related
to the charm-charmless cases in the final states and we have no predictions on the charm-
charm cases from this approach. In this approach, the wave functions of the participating
mesons, which are available with higher order corrections, have been used to calculate the
amplitudes [30]. Therefor, over all agreement between our results and predictions of PQCD
for charm-light cases in the final state and the experimental data for both charm-light and
charm-charm cases, could be considered as a good test of the QCD factorization at leading
order of «, for related transitions. However, for exact comparison, much more efforts are
needed in the future works, which may include the higher order corrections. Our results of
some decay modes which have not been measured in the experiment can be tested in the
future experiments at LHCb and other B factories.

In conclusion, using the QCD factorization approach and taking into account the con-
tributions of the current-current, QCD penguin and the electroweak penguin operators at
the leading approximation, the decay amplitudes and decay widths of B, — Dq(D;)P and
B, — D,(D;)V transitions were calculated in terms of the transition form factors of the
B, — Dy(Dy). Having computed those form factors in the framework of the three-point
QCD sum rules in our previous works, the branching fraction for these decays were also
evaluated. A comparison of our results with the predictions of the perturbative QCD as
well as the existing experimental data was presented. Our results are over all in a good
agreement with the predictions of the PQCD and the existing experimental data. Our
predictions on some transitions, which have no experimental data can be checked by fu-
ture experiments at LHCDb or other B factories. To get more exact results from the QCD
factorization method, higher order ay corrections should be considered in the future works.
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2 2 2 2 2 2 2 2
q m_+ M+ mK*(892)i mp+ mp, Myt Mpyx
+ NHO
f —D (q2) 0.59 £ 0.14 0.60 + 0.15 0.63 + 0.16 0.86 + 0.22 0.92 +0.23 0.96 + 0.24 1.08 £ 0.27
+.,p0
f_B —D (q2) —0.20 + 0.05 —0.21 + 0.05 —0.22 £ 0.06 —0.38 £ 0.10 —0.44 +0.11 —0.49 £ 0.12 —0.69 + 0.17
0_,p+
f —D (q2> 0.58 + 0.15 0.59 +0.15 0.63 £ 0.17 0.86 4+ 0.22 0.92 +0.22 0.95 £+ 0.23 1.08 £+ 0.27
0 +
f_B —D (q2> —0.20 + 0.05 —0.21 £ 0.05 —0.22 + 0.06 —0.37 £ 0.10 —0.44 £ 0.11 —0.49 £ 0.12 —0.69 + 0.17
BY—Df o
f+ (q ) 0.26 £+ 0.06 0.27 + 0.06 0.28 + 0.07 0.35 + 0.09 0.38 £ 0.10 0.39 + 0.10 0.42 +£0.11
Bg—>D5+ 2
f_ (q ) —0.11 + 0.03 —0.12 + 0.03 —0.13 £ 0.03 —0.15 + 0.04 —0.16 + 0.04 —0.17 £ 0.05 —0.18 + 0.05
Table 4: The values of form factors f+ at different values of ¢2.
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2 2 2 2 2 2 2 2
q m M+ mK*(892)i Mmp+ mp, Myt Mps
+ 5% 0
OB —D (q2> 0.76 +0.19 0.78 +0.19 0.80 + 0.20 0.97 + 0.24 1.01 +0.25 1.09 + 0.26 1.13 +0.27
5% 0
Bt—D*"( 2
1 - (q ) 0.62 £ 0.15 0.63 & 0.15 0.67 + 0.16 0.98 +0.24 1.08 + 0.26 1.14 + 0.27 1.27 £ 0.29
B+—>D*O 2
2 (q ) 0.90 £+ 0.22 0.96 + 0.23 0.99 + 0.24 1.50 + 0.38 1.60 + 0.40 1.82 + 0.46 2.00 £+ 0.50
BT—D*%/ 2
3 (q ) —1.51 +0.38 —1.62 + 0.40 —1.65 £ 0.40 —2.01 £ 0.50 —2.30 £ 0.55 —2.50 £ 0.60 —2.65 + 0.61
BY—D*t/ 9
0 (q ) 0.76 +0.19 0.78 +0.19 0.81 + 0.20 0.97 + 0.24 1.02 + 0.25 1.10 £+ 0.26 1.13 +0.27
BY—D*t/ 9
1 - (q ) 0.61 £ 0.15 0.63 & 0.15 0.66 + 0.16 0.98 +0.24 1.07 &+ 0.26 1.14 + 0.27 1.27 £ 0.29
BY—D*t/ 9
2 - (q ) 0.90 £+ 0.22 0.95 + 0.23 0.99 £+ 0.24 1.51 + 0.38 1.61 &+ 0.40 1.82 + 0.46 2.01 £ 0.50
BY—D*t/ 9
3 (q ) —1.52 +0.38 —1.62 + 0.40 —1.66 £ 0.40 —2.01 +£0.50 —2.31 £0.55 —2.51 £+ 0.60 —2.65 + 0.61
FERD (2
0 q 0.38 +0.10 0.40 £ 0.11 0.41 +0.11 0.58 +0.15 0.62 + 0.16 0.67 +0.17 0.70 £+ 0.18
fBé’aD;+ 2
1 q 0.33 £ 0.08 0.36 + 0.08 0.40 + 0.11 0.67 +0.17 0.71 £ 0.17 0.74 +0.18 0.76 + 0.18
BY—D;t o
f2 (q ) 0.43 £0.11 0.47 &+ 0.12 0.50 + 0.13 0.81 +0.21 0.85 + 0.22 0.88 + 0.23 0.91 + 0.23
By—Dit 9
f (q ) —0.67 £0.17 —0.69 £ 0.17 —0.72 £ 0.18 —1.29 +0.32 —1.42 +£0.34 —1.49 £ 0.35 —1.55 £+ 0.36

3

Table 5: The values of form factors fo123 at different values of ¢*.
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B, — D,P

present work

PQCD [30]

Exp [39]

BT — DOg*
B* — DVK*
B* — DOD*
B* — D'D,*
BY — D*x¥
B — D*KT
BY — DED¥
B° — D*DF
BY — DFnF
B - DFKT
BY — DD¥

B? — DD,

(5.95 +1.95) x 1073
(4.31 £ 1.52) x 107
(3.444+1.22) x 10~*
(2.03 +0.85) x 1072
(5.69 + 1.70) x 1073
(3.534+1.23) x 10~*
(2.87+£0.89) x 1074
(8.88 +2.82) x 1073
(1.42 4 0.57) x 1073
(1.03 4 0.51) x 10~*
(1.20 £ 0.73) x 10~*

(2.174+0.82) x 1073

5 11+2.95+0.43+0.15

-3
T507—0 75015 X 10

4 00+2.35+0.63+0.12

—4
164-093-012 X 10

2 69+1.78+0.55+0.08

-3
117-0.73—0.08 X 10

1.56--0.63-40.07 —4
2.4327 0120 =0.07 X 10

2 13+1.14+0.69+0.06

-3
0.81-0.68—0.06 X 10

1 71+0.92+0.58+0.05

—4
2065055005 X 10

(4.92 +0.20) x 1073
(4.0840.24) x 107*
(4.80 & 1.00) x 10~*
(1.09 +0.27) %
(3.40 £ 0.90) x 1073
(2.00 £ 0.60) x 10~
(1.90 + 0.60) x 1074
(6.50 +2.10) x 1073

(3.80 & 0.30) x 1073

Table 6: Values for the branching ratio of B, — D, P.
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BHD;P

present work

PQCD [30]

Exp [39]

BE . DOqt
Bt _ DK+
BE _ DOpt
B* — DD,*
B0 _ DT
B° — D** K7
B° — DD
B° — D*D,F
BY — D:iﬁ
B — DK~
B — D;* D7

BY — D:*D,F

(4.89 +1.52) x 1073
(3.38+1.04) x 10~*
(2.5740.88) x 10~*
(11.03£2.91) x 1073
(3.45+1.75) x 1072
(2.08 4+ 0.68) x 10~*
(3.14 + 1.46) x 10~*
(8.69 4 2.88) x 1073
(2.1140.73) x 1073
(1.59 £ 0.67) x 1074
(0.30 4 0.11) x 10~*

(2.54 +0.57) x 1073

+2.924-0.44+0.15
5'04—2.04—0.73—0.15

+2.3340.62+4-0.12
3'60—1.62—0.92—0.12

+1.7340.53-+0.07
2.6071 11070 007

+1.52+4-0.62+0.07
2 '37—0.99—0.69—0.07

+1.124-0.784-0.07
2'42—0.72—0.77—0.07

+0.90+-0.56+0.05
1 '65—0.63—0.53—0.05

x 1073

x 1074

x 1073

x 1074

x 1073

x 1074

(4.60 +0.40) x 1073

(3.70 & 0.40) x 10~

(10.00 & 4.00) x 1073
(2.76 £ 0.21) x 1073
(2.14 £ 0.20) x 10~
(9.30 & 1.50) x 10

(8.80 % 1.60) x 1073
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Table 7: Values for the branching ratio of B, — D} P.
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B, — D,V

present work

PQCD [30]

Exp [39]

B* — DYK*(892)"
Bﬂ: N DOD*:t
B* — DD

B° — D*K*(892)T
BO N D:tDsJ
B’ — Din

BY — DFK*(892)"
BY — DFD*F

B — DSD;T

(2.90 = 0.88) x 10
(5.61 & 1.88) x 10~
(7.01 £ 2.09) x 1073
(3.20 +1.15) x 10~
(8.18 +2.84) x 10~
(9.23 +2.67) x 1073
(0.50 4 0.22) x 10~
(1.07 £ 0.59) x 10~

(2.62 4 0.93) x 1073

3.02%

3.86+0.124-0.20
2.68—1.58—0.20

x 1074

2.614-0.944-0.12
1.69—-1.11-0.12

x 1074

1.62+0.88+-0.10

4
116-0.91-0.10 X 10

(6.30 £ 0.80) x 10~
(4.60 = 0.90) x 10~
(7.20 + 2.60) x 1073

(4.50 £ 0.70) x 10~

(8.60 & 3.40) x 1073

Table 8: Values for the branching ratio of B, — D,V
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B, — DV present work PQCDI30] Exp[39]

B — D**K*(892)* (5.07+2.61) x 1074 6.82" 41441224021 . 19~4 (8,30 & 1.50) x 10~*
B* = D*'D**  (0.11£0.07) x 102 - <11%
B* = D*'D**  (6.85+2.98) x 1072 - 2.20 +0.70 %
B — D" K*(890)F (3.55+1.25) x 1074 4.8873 31164015 o 190=4 (3.30 £ 0.60) x 10~*
B — D*"D*F (878 +2.50) x 1074 - (8.30 +1.01) x 10~
B — D*"D:F (817 +2.93) x 102 - (1.79 £ 0.16) %
BY — D**K*(890)T (1.634+0.86) x 107* 3.47T195+10T+0.1L o 104 —
B? — D:*D*F (6.76 =2.69) x 10~* — —

B — D*DrF (277 £0.76) x 1072 _ (23421 o

Table 9: Values for the branching ratio of B, — D V.
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