26 research outputs found

    Local comparisons of tropospheric ozone: vertical soundings at two neighbouring stations in southern Bavaria

    Get PDF
    In this study ozone profiles of the differential-absorption lidar at Garmisch-Partenkirchen are compared with those of ozone sondes of the Forschungszentrum Jülich and of the Meteorological Observatory Hohenpeißenberg (German Weather Service). The lidar measurements are quality assured by the highly accurate nearby in situ ozone measurements at the Wank (1780 m a.s.l.) and Zugspitze (2962 m a.s.l.) summits and at the Global Atmosphere Watch station Schneefernerhaus (UFS, 2670 m a.s.l.), at distances of 9 km or less from the lidar. The mixing ratios of the lidar agree with those of the monitoring stations, with a standard deviation (SD) of 1.5 ppb, and feature a slight positive offset of 0.6 ± 0.6 ppb (SD) conforming to the known −1.8 % calibration bias of the in situ instruments. Side-by-side soundings of the lidar and electrochemical (ECC) sonde measurements in February 2019 by a team of the Forschungszentrum Jülich shows small positive ozone offsets for the sonde with respect to the lidar and the mountain stations (0.5 to 3.4 ppb). After applying an altitude-independent bias correction to the sonde data an agreement to within just ±2.5 ppb in the troposphere was found, which we regard as the wintertime uncertainty of the lidar. We conclude that the recently published uncertainties of the lidar in the final configuration since 2012 are realistic and rather small for low to moderate ozone concentrations. Comparisons of the lidar with the Hohenpeißenberg routine measurements with Brewer-Mast sondes are more demanding because of the distance of 38 km between the two sites implying significant ozone differences in some layers, particularly in summer. Our comparisons cover the 3 years September 2000 to August 2001, 2009, and 2018. A slight negative average offset (−3.64 ± 3.72 ppb (SD)) of the sondes with respect to the lidar was found. We conclude that most Hohenpeißenberg sonde data could be improved in the troposphere by recalibration with the Zugspitze station data (1978 to 2011 summit, afterwards UFS). This would not only remove the average offset but also greatly reduce the variability of the individual offsets. The comparison for 2009 suggests a careful partial re-evaluation of the lidar measurements between 2007 and 2011 for altitudes above 6 km, where occasionally a negative bias occurred

    A case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe

    Get PDF
    Extreme convective events in the troposphere not only have immediate impacts on the surface, but they can also influence the dynamics and composition of the lower stratosphere (LS). One major impact is the moistening of the LS by overshooting convection. This effect plays a crucial role in climate feedback, as small changes of water vapor in the upper troposphere and lower stratosphere (UTLS) have a large impact on the radiative budget of the atmosphere. In this case study, we investigate water vapor injections into the LS by two consecutive convective events in the European mid-latitudes within the framework of the MOSES (Modular Observation Solutions for Earth Systems) measurement campaign during the early summer of 2019. Using balloon-borne instruments, measurements of convective water vapor injection into the stratosphere were performed. Such measurements with a high vertical resolution are rare. The magnitude of the stratospheric water vapor reached up to 12.1 ppmv (parts per million by volume), with an estimated background value of 5 ppmv. Hence, the water vapor enhancement reported here is of the same order of magnitude as earlier reports of water vapor injection by convective overshooting over North America. However, the overshooting took place in the extratropical stratosphere over Europe and has a stronger impact on long-term water vapor mixing ratios in the stratosphere compared to the monsoon-influenced region in North America. At the altitude of the measured injection, a sharp drop in a local ozone enhancement peak makes the observed composition of air very unique with high ozone up to 650 ppbv (parts per billion by volume) and high water vapor up to 12.1 ppmv. ERA-Interim does not show any signal of the convective overshoot, the water vapor values measured by the Microwave Limb Sounder (MLS) in the LS are lower than the in situ observations, and the ERA5 overestimated water vapor mixing ratios. Backward trajectories of the measured injected air masses reveal that the moistening of the LS took place several hours before the balloon launch. This is in good agreement with the reanalyses, which shows a strong change in the structure of isotherms and a sudden and short-lived increase in potential vorticity at the altitude and location of the trajectory. Similarly, satellite data show low cloud-top brightness temperatures during the overshooting event, which indicates an elevated cloud top height

    The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses

    Get PDF
    The quasi-biennial oscillation (QBO) of the stratospheric tropical winds influences the global circulation over a wide range of latitudes and altitudes. Although it has strong effects on surface weather and climate, climate models have great difficulties in simulating a realistic QBO, especially in the lower stratosphere. Therefore, global wind observations in the tropical upper troposphere and lower stratosphere (UTLS) are of particular interest for investigating the QBO and the tropical waves that contribute significantly to its driving. In our work, we focus on the years 2018–2022 and investigate the QBO and different tropical wave modes in the UTLS region using global wind observations made by the Aeolus satellite instrument and three meteorological reanalyses: the fifth generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-5), the Japanese 55-year Reanalysis (JRA-55) of the Japan Meteorological Agency (JMA), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Further, we compare these data with observations of selected radiosonde stations. By comparison with Aeolus observations, we find that, on zonal average, the QBO in the lower stratosphere is well represented in all three reanalyses, with ERA-5 performing best. Averaged over the years 2018–2022, agreement between Aeolus and the reanalyses is better than 1 to 2 m s−1, with somewhat larger differences during some periods. Differently from zonal averages, radiosonde stations provide only local observations and are therefore biased by global-scale tropical waves, which limits their use as a QBO standard. While reanalyses perform well on zonal average, there can be considerable local biases between reanalyses and radiosondes. We also find that, in the tropical UTLS, zonal wind variances of stationary waves and the most prominent global-scale traveling equatorial wave modes, such as Kelvin waves, Rossby-gravity waves, and equatorial Rossby waves, are in good agreement between Aeolus and all three reanalyses (in most cases better than 20 % of the peak values in the UTLS). On zonal average, this supports the use of reanalyses as a reference for comparison with free-running climate models, while locally, certain biases exist, particularly in the QBO wind shear zones and around the 2019–2020 QBO disruption.</p

    First implementation of a new cross-disciplinary observation strategy for heavy precipitation events from formation to flooding

    Get PDF
    Heavy Precipitation Events (HPE) are the result of enormous quantities of water vapor being transported to a limited area. HPE rainfall rates and volumes cannot be fully stored on and below the land surface, often leading to floods with short forecast lead times that may cause damage to humans, properties, and infrastructure. Toward an improved scientific understanding of the entire process chain from HPE formation to flooding at the catchment scale, we propose an elaborated event-triggered observation concept. It combines flexible mobile observing systems out of the fields of meteorology, hydrology and geophysics with stationary networks to capture atmospheric transport processes, heterogeneous precipitation patterns, land surface and subsurface storage processes, and runoff dynamics. As part of the Helmholtz Research Infrastructure MOSES (Modular Observation Solutions for Earth Systems), the effectiveness of our observation strategy is illustrated by its initial implementation in the Mueglitz river basin (210 km2^2), a headwater catchment of the Elbe in the Eastern Ore Mountains with historical and recent extreme flood events. Punctual radiosonde observations combined with continuous microwave radiometer measurements and back trajectory calculations deliver information about the moisture sources, and initiation and development of HPE. X-band radar observations calibrated by ground-based disdrometers and rain gauges deliver precipitation information with high spatial resolution. Runoff measurements in small sub-catchments complement the discharge time series of the operational network of gauging stations. Closing the catchment water balance at the HPE scale, however, is still challenging. While evapotranspiration is of less importance when studying short-term convective HPE, information on the spatial distribution and on temporal variations of soil moisture and total water storage by stationary and roving cosmic ray measurements and by hybrid terrestrial gravimetry offer prospects for improved quantification of the storage term of the water balance equation. Overall, the cross-disciplinary observation strategy presented here opens up new ways toward an integrative and scale-bridging understanding of event dynamics

    Swabian MOSES 2021: An interdisciplinary field campaign for investigating convective storms and their event chains

    Get PDF
    The Neckar Valley and the Swabian Jura in southwest Germany comprise a hotspot for severe convective storms, causing tens of millions of euros in damage each year. Possible reasons for the high frequency of thunderstorms and the associated event chain across compartments were investigated in detail during the hydro-meteorological field campaign Swabian MOSES carried out between May and September 2021. Researchers from various disciplines established more than 25 temporary ground-based stations equipped with state-of-the-art in situ and remote sensing observation systems, such as lidars, dual-polarization X- and C-band Doppler weather radars, radiosondes including stratospheric balloons, an aerosol cloud chamber, masts to measure vertical fluxes, autosamplers for water probes in rivers, and networks of disdrometers, soil moisture, and hail sensors. These fixed-site observations were supplemented by mobile observation systems, such as a research aircraft with scanning Doppler lidar, a cosmic ray neutron sensing rover, and a storm chasing team launching swarmsondes in the vicinity of hailstorms. Seven Intensive Observation Periods (IOPs) were conducted on a total of 21 operating days. An exceptionally high number of convective events, including both unorganized and organized thunderstorms such as multicells or supercells, occurred during the study period. This paper gives an overview of the Swabian MOSES (Modular Observation Solutions for Earth Systems) field campaign, briefly describes the observation strategy, and presents observational highlights for two IOPs

    Impact of severe convection on the water vapor mixing ratio in the extra-tropical stratosphere

    No full text
    The emission of anthropogenic greenhouse gases leads to a continuous increase in average global surface temperatures. The radiative effect of the anthropogenic sources is amplified by feedback processes, like the water vapor feedback. The rapid change in climatic conditions is evident not only in the mean of the relevant weather parameters, but also in the severity and frequency of extreme events. Extreme convective events in the troposphere not only have immediate impacts on the surface, they can also influence the dynamics and composition of the stratosphere. One major impact is the moistening of the stratosphere by the transport of tropospheric air masses by overshooting convection and pyro-convection. This effect plays a crucial role in climate feedback as small changes of water vapor mixing ratios in the upper troposphere and lower stratosphere (UTLS) have a large impact on the radiative budget of the atmosphere and hence have an additional positive feedback on the changing climate. In this thesis four cases are investigated in which water vapor was injected into the stratosphere. Two of them are cases of convective overshooting and two are cases of pyro-convection. In all of these cases, unusual values of water vapor were measured in the stratosphere and a persistent dynamical signature (potential vorticity anomaly) was produced. For the convective case, the measurements were made by the Cryogenic Frostpoint Hygrometer (CFH) which requires Triflouromethane (R-23) as a cooling agent. Since the year 2020, R-23 has not been acquirable in Europe. Hence, an alternative cooling method for the instrument was successfully explored and tested. The two cases of convective overshooting were investigated on two consecutive days in the European mid-latitudes in early summer of 2019. Using balloon-borne instruments, measurements of convectively injected water vapor in the stratosphere were performed. The magnitude of the affected stratospheric water vapor reached up to 12.1 ppmv with an estimated background value of 5 ppmv. The corresponding water vapor values measured by the Microwave Limb Sounder (MLS) satellite in the lower stratosphere (LS) are lower than the in-situ observations and the fifth generation of ECMWF atmospheric global reanalysis (ERA5) reanalysis overestimated water vapor mixing ratios
    corecore