20 research outputs found

    Evaluation of sperm chromatin integrity using aniline blue and toluidine blue staining in infertile and normozoospermic men

    Get PDF
    Background: Male infertility is defined as a man lost his ability to fertilize a fertile female naturally. Diagnosis of male infertility cannot be made just according to basic semen analysis. It is necessity to have specific tests for evaluation of chromatin integrity. In this study, an attempt was made to evaluate the sperm chromatin quality in fertile men and infertile subgroup. Methods: Among 1386 couples, 342 men were categorized into normospermia and 1044 were infertile and they were referred to Yazd Research and Clinical Center for infertility treatment. Standard semen analysis and sperm nuclear maturity tests including aniline blue (AB) and toluidine blue (TB) staining were done. Data were analyzed by SPSS software. The p=0.05 was considered statistically significant. Results: The mean value of TB staining was significantly higher in infertile group compared to normospermic group (p=0.005). Mean of sperm normal morphology was lower in idiopathic infertile men in comparison with normozoospermic men (p= 0.001). The highest negative correlation was obtained between sperm count and AB staining. Progressive motility was negatively correlated with AB and TB staining in both groups but there was no significant difference between AB staining and progressive motility in men normospermia group. Conclusion: Sperm chromatin staining using AB and TB showed a negative association between sperm chromatin condensation with sperm count, normal morphology and progressive motility. It seems that the AB and TB test may be useful for the assessment of male fertility potential. © 2019 Avicenna Research Institute. All rights reserved

    Pathophysiologic mechanisms of obesity- And chronic inflammation-related genes in etiology of polycystic ovary syndrome

    Get PDF
    Objective(s): One of the common heterogeneous reproductive disorders in women of childbearing age is polycystic ovary syndrome (PCOS). It is characterized by lack of fertility due to anovulatory cycles, hyperandrogenemia, polycystic ovaries, hyperinsulinemia, and obesity. Both reproductive anomalies and metabolic disorders are involved in PCOS pathology. Although the role of increased levels of androgens in initiation of PCOS is almost proven, mechanisms of PCOS pathophysiology are not clear. Here we discuss roles of altered metabolic conditions, obesity, and chronic inflammation in PCOS pathophysiology. Materials and Methods:: In this review, we attempted to identify genes related to obesity and chronic inflammation aspects of PCOS and their physiological functions to explain the pathways that are regulated by these genes and can be a prominent function in PCOS predisposition. For this purpose, published articles and reviews dealing with genetic evaluation of PCOS in women in peer-reviewed journals in PubMed and Google Scholar databases were included in this review. Results: Obesity and chronic inflammation are not prominent diagnostic features of PCOS, but they play an important role in exacerbating metabolic and hyperandrogenic states. ADIPOQ, FTO TGFß, and DENND1A as the main obesity- and chronic inflammation-related genes have roles in PCOS pathophysiology. Conclusion: It seems that genes related to obesity pathology in genomic research association, are related to metabolic aspects and body mass index in PCOS patients. Genomes have roles in chronic inflammation, followed by obesity, in the pathogenesis of PCO

    Imaging of the muscle and bone from benchtop to bedside

    Get PDF
    Studies have begun to show that muscles and bones play a role in the regulation of biological functions through a combination of biomechanical and biochemical signals. In vivo and ex vivo imaging techniques are crucial in the understanding of the morphology and architecture of muscle and bone for further understanding of musculoskeletal physiology and pathophysiology. This systematic review of the literature summarizes current knowledge and outlines new insights into the functions of muscle and bone elucidated by imaging techniques, with a focus on the recent advances in the musculoskeletal system enabled by novel technologies, such as CLARITY, Fast Free-of-Acrylamide Clearing Tissue (FACT), computed tomography (CT), and positron emission tomography (PET). This may serve as guidance for the development of new strategies to prevent and diagnose motor or metabolism disorders related to the malfunction of muscle and bone

    Mesenchymal stromal/stem cells and their exosomes for restoration of spermatogenesis in non-obstructive azoospermia: a systemic review

    Get PDF
    Stem cells have been introduced as new promising therapeutic agents in treatment of degenerative diseases because of having high differentiation potential while maintaining the ability to self-replicate and retaining features of their source cells. Among different type of cell therapies, mesenchymal stromal/stem cell (MSC) therapy is being increasingly developed as a new way to treat structural defects that need to be repaired and regenerated. Non-obstructive azoospermia (NOA) is a reproductive disease in men that causes infertility in 10% of infertile men. Based on in vitro studies, MSCs from different tissue sources have been differentiated into germ cells or gamete progenitor cells by simple methods in both male and female. On the other hand, the therapeutic effects of MSCs have been evaluated for the treatment of NOA animal models created by chemical or surgical compounds. The results of these studies confirmed successful allotransplantation or xenotransplantation of MSCs in the seminiferous tubules. As well, it has been reported that exosomes secreted by MSCs are able to induce the process of spermatogenesis in the testes of infertile animal models. Despite numerous advances in the treatment of reproductive diseases in men and women with the help of MSCs or their exosomes, no clinical trial has been terminated on the treatment of NOA. This systematic review attempts to investigate the possibility of MSC therapy for NOA in men

    Benign prostatic hyperplasia treatment using plasmonic nanoparticles irradiated by laser in a rat model

    Get PDF
    Objective: In the current study we have stimulated the efficacy of plasmonic nanoparticles (NPs) by laser hyperthermia to achieve a less invasive method for tumor photothermal therapy of benign prostatic hyperplasia (BPH). Methods: The levels of apoptosis on induced BPH in rats were assessed after treatment and revealed and recorded by various assayed. Moreover, the expression of caspases was considered to demonstrate the apoptotic pathways due to laser induced plasmonic NPs. Results: In the Laser + NPs group prostate size of induced BPH decreased. Laser + NPs also decreased prostate specific antigen in comparison with the BPH groups. Furthermore, Laser + NPs attenuated BPH histopathologic indices in the rats. Laser + NPs induced apoptosis in prostatic epithelial cells via caspase-1 pathway. Conclusions: Altogether, the approach and findings from this study can be applied to introduce the laser irritated NPs method as a novel and less invasive therapy for patients suffering from BP

    Three-dimensional and two-dimensional relationships of gangliogenesis with folliculogenesis in mature mouse ovary: a Golgi–Cox staining approach

    Get PDF
    The present study was set out to investigate two-dimensional (2D) and three-dimensional (3D) evaluations of ovarian nervous network development and the structural relationship between folliculogenesis and gangliogenesis in mouse ovaries. Adult mice ovarian tissue samples were collected from follicular and luteal phases after cardiac perfusion. Ovarian samples were stained by a Golgi–Cox protocol. Following staining, tissues were serially sectioned for imaging. Neural filaments and ganglia were present in the ovaries. In both 2D and 3D studies, an increase in the number and area of ganglia was seen during the follicular growth. The same pattern was also seen in corpora lutea development. However, in some cases such as ratio of ganglia number to follicle area, the ratio of ganglia area to follicular area, 2D findings were different compared with the 3D results. 3D analysis of ovarian gangliogenesis showed the possible direct effect of them on folliculogenesis. Golgi–Cox staining was used in this study for 3D evaluation in non-brain tissue. The results of 3D analysis of the present study showed that, in some cases, the information provided by 2D analysis does not match the reality of ovarian neuronal function. This confirmed the importance of 3D analysis for evaluation of ovarian functio

    MRI Tracking of Marine Proliferating Cells In Vivo Using Anti-Oct4 Antibody-Conjugated Iron Nanoparticles for Precision in Regenerative Medicine

    Get PDF
    Marine invertebrates are multicellular organisms consisting of a wide range of marine environmental species. Unlike vertebrates, including humans, one of the challenges in identifying and tracking invertebrate stem cells is the lack of a specific marker. Labeling stem cells with magnetic particles provides a non-invasive, in vivo tracking method using MRI. This study suggests antibody-conjugated iron nanoparticles (NPs), which are detectable with MRI for in vivo tracking, to detect stem cell proliferation using the Oct4 receptor as a marker of stem cells. In the first phase, iron NPs were fabricated, and their successful synthesis was confirmed using FTIR spectroscopy. Next, the Alexa Fluor anti-Oct4 antibody was conjugated with as-synthesized NPs. Their affinity to the cell surface marker in fresh and saltwater conditions was confirmed using two types of cells, murine mesenchymal stromal/stem cell culture and sea anemone stem cells. For this purpose, 106 cells of each type were exposed to NP-conjugated antibodies and their affinity to antibodies was confirmed by an epi-fluorescent microscope. The presence of iron-NPs imaged with the light microscope was confirmed by iron staining using Prussian blue stain. Next, anti-Oct4 antibodies conjugated with iron NPs were injected into a brittle star, and proliferating cells were tracked by MRI. To sum up, anti-Oct4 antibodies conjugated with iron NPs not only have the potential for identifying proliferating stem cells in different cell culture conditions of sea anemone and mouse cell cultures but also has the potential to be used for in vivo MRI tracking of marine proliferating cells. © 2023 by the authors

    Appropriate fixative for MEM-G/9 staining of cultured human HLA-G-positive JEG-3 trophoblast tumor cells

    No full text
    Human leukocyte antigen (HLA-G) participates in immunosuppression and is useful for prenatal diagnostics. Isolation of fetal cells positive for HLA-G by HLA-G antibody conjugated nanoparticles from the cervix of pregnant women is the basis for non-invasive prenatal testing. Endocervical specimens are fixed in transport medium before isolation using antibody conjugated nanoparticles. Staining of HLA-G using MEM-G/9 antibody, however, is restricted to unfixed cells. We investigated the effect of several fixatives on the interaction of HLA-G with MEM-G/9 in the HLA-G-positive cell line, JEG-3. We investigated absolute methanol, 1:1 acetate buffer:methanol, Pap solution and paraformaldehyde. The effects of these fixatives were evaluated using immunofluorescence. We found no MEM-G/9 surface staining of methanol fixed cells. Approximately 40% of JEG-3 cells fixed with paraformaldehyde failed to stain. Nearly all cells were stained with MEM-G/9 following fixation with acetate buffer:methanol or Pap solution. Our findings indicate the importance of using an appropriate fixative for preserving HLA-G cell surface antigen for studies using the MEM-G/9 antibody

    Which Hyperglycemic Model of Zebrafish (Danio rerio) Suites My Type 2 Diabetes Mellitus Research? A Scoring System for Available Methods

    No full text
    Despite extensive studies on type 2 diabetes mellitus (T2DM), there is no definitive cure, drug, or prevention. Therefore, for developing new therapeutics, proper study models of T2DM is necessary to conduct further preclinical researches. Diabetes has been induced in animals using chemical, genetic, hormonal, antibody, viral, and surgical methods or a combination of them. Beside different approaches of diabetes induction, different animal species have been suggested. Although more than 85% of articles have proposed rat (genus Rattus) as the proper model for diabetes induction, zebrafish (Danio rerio) models of diabetes are being used more frequently in diabetes related studies. In this systematic review, we compare different aspects of available methods of inducing hyperglycemia referred as T2DM in zebrafish by utilizing a scoring system. Evaluating 26 approved models of T2DM in zebrafish, this scoring system may help researchers to compare different T2DM zebrafish models and select the best one regarding their own research theme. Eventually, glyoxalase1 (glo1−/−) knockout model of hyperglycemia achieved the highest score. In addition to assessment of hyperglycemic induction methods in zebrafish, eight most commonly proposed diabetic induction approval methods are suggested to help researchers confirm their subsequent proposed models

    Effects of Phosalone Plant Pesticide on Sperm Parameters and Sexual Hormone Levels in Wistar Rats: an Experimental Study

    Full text link
    Background: Phosalone is an organophosphate insecticide, applied to control of plant pests. This compound has various side effects because it acts as an acetyl cholinesterase enzyme inhibitor. Objective: To investigate the effects of phosalone on the sperm parameters of and levels of sex hormones in adult male rats. Materials and Methods: In this experimental study, 16 adult (8-12 wk) male Wister rates (weighing 220-280 gr) were randomly assigned into 4 groups (n = 4/each). Group 1 (control) received only routine adequate water and food; Group 2, 3, and 4 received different low doses of phosalone (60, 90, and 120 mg/kg respectively). The rats were weighed and anesthetized after 48 days. Sperm parameters including number, motility, and viability as well as sex hormones (such as Luteinizing Hormone, Follicle Stimulating Hormone, and testosterone) were evaluated and compared after removing the epididymis tail. Results: Our results showed that phosalone decreased sperm motility, viability, and number in a dose-dependent manner. The level of FSH and LH was increased, and testosterone was decreased. Also, depending on the dose, phosalone decrease sperm motility and viability (p ≤ 0.001), while the level of FSH and LH was increased and testosterone was decreased (p = 0.861). Conclusion: Phosalone has negative effects on reproductive indices in male rats and can cause serious damage and decrease the number and sperms motility. It can also cause infertility due to changing the concentration of hormones. Key words: Organophosphate, Pesticides, Phosalone, Sperm, Sex hormones
    corecore