374 research outputs found
Toll-like receptor polymorphisms and cerebral malaria: <it>TLR2 </it>Δ22 polymorphism is associated with protection from cerebral malaria in a case control study
<p>Abstract</p> <p>Background</p> <p>In malaria endemic areas, host genetics influence whether a <it>Plasmodium falciparum</it>-infected child develops uncomplicated or severe malaria. TLR2 has been identified as a receptor for <it>P. falciparum</it>-derived glycosylphosphatidylinositol (GPI), and polymorphisms within the TLR2 gene may affect disease pathogenesis. There are two common polymorphisms in the 5' un-translated region (UTR) of TLR2, a 22 base pair deletion in the first unstranslated exon (Δ22), and a GT dinucleotide repeat in the second intron (GTn).</p> <p>Methods</p> <p>These polymorphisms were examined in a Ugandan case control study on children with either cerebral malaria or uncomplicated malaria. Serum cytokine levels were analysed by ELISA, according to genotype and disease status. In vitro TLR2 expression was measured according to genotype.</p> <p>Results</p> <p>Both Δ22 and GTn polymorphisms were highly frequent, but only Δ22 heterozygosity was associated with protection from cerebral malaria (OR 0.34, 95% confidence intervals 0.16, 0.73). In vitro, heterozygosity for Δ22 was associated with reduced pam3cys inducible TLR2 expression in human monocyte derived macrophages. In uncomplicated malaria patients, Δ22 homozygosity was associated with elevated serum IL-6 (<it>p </it>= 0.04), and long GT repeat alleles were associated with elevated TNF (<it>p </it>= 0.007).</p> <p>Conclusion</p> <p>Reduced inducible TLR2 expression may lead to attenuated pro-inflammatory responses, a potential mechanism of protection from cerebral malaria present in individuals heterozygous for the TLR2 Δ22 polymorphism.</p
Genome-wide association study identifies WNT7B as a novel locus for central corneal thickness in Latinos
The cornea is the outermost layer of the eye and is a vital component of focusing incoming light on the retina. Central corneal thickness (CCT) is now recognized to have a significant role in ocular health and is a risk factor for various ocular diseases, such as keratoconus and primary open angle glaucoma. Most previous genetic studies utilized European and Asian subjects to identify genetic loci associated with CCT. Minority populations, such as Latinos, may aid in identifying additional loci and improve our understanding of the genetic architecture of CCT. In this study, we conducted a genome-wide association study (GWAS) in Latinos, a traditionally understudied population in genetic research, to further identify loci contributing to CCT. Study participants were genotyped using either the Illumina OmniExpress BeadChip (~730K markers) or the Illumina Hispanic/SOL BeadChip (~2.5 million markers). All study participants were 40 years of age and older. We assessed the association between individual single nucleotide polymorphisms (SNPs) and CCT using linear regression, adjusting for age, gender and principal components of genetic ancestry. To expand genomic coverage and to interrogate additional SNPs, we imputed SNPs from the 1000 Genomes Project reference panels. We identified a novel SNP, rs10453441 (P=6.01E-09), in an intron of WNT7B that is associated with CCT. Furthermore, WNT7B is expressed in the human cornea. We also replicated 11 previously reported loci, including IBTK, RXRA-COL5A1, COL5A1, FOXO1, LRRK1 and ZNF469 (P < 1.25E-3). These findings provide further insight into the genetic architecture of CCT and illustrate that the use of minority groups in GWAS will help identify additional loci
Genetic variants of MICB and PLCE1 and associations with the laboratory features of dengue
Background A previous genome-wide association study identified 2 susceptibility loci for severe dengue at MICB rs3132468 and PLCE1 rs3740360 and further work showed these mutations to be also associated with less severe clinical presentations. The aim of this study was to determine if these specific loci were associated with laboratory features of dengue that correlate with clinical severity with the aim of elucidating the functional basis of these genetic variants. Methods This was a case-only analysis of laboratory-confirmed dengue patients obtained from 2 prospective cohort studies and 1 randomised clinical trial in Vietnam (Trial registration: ISRCTN ISRCTN03147572. Registered 24th July 2012). 2742 dengue cases were successfully genotyped at MICB rs3132468 and PLCE1 rs3740360. Laboratory variables were compared between genotypes and stratified by DENV serotype. Results The analysis showed no association between MICB and PLCE1 genotype and early viraemia level, platelet nadir, white cell count nadir, or maximum haematocrit in both overall analysis and in analysis stratified by serotype. Discussion The lack of an association between genotype and viremia level may reflect the sampling procedures within the included studies. The study findings mean that the functional basis of these mutations remains unclear. Trial registration ISRCTN ISRCTN03147572. Registered 24th July 2012
In silico transcriptional regulation and functional analysis of dengue shock syndrome associated SNPs in PLCE1 and MICB genes
YesSingle nucleotide polymorphisms (SNPs) in PLCE1
and MICB genes increase risk for the development of dengue
shock syndrome (DSS). We used Bioinformatics tools to predict
alterations at the transcriptional and posttranslational levels
driven by PLCE1 and MICB SNPs associated with DSS.
Functional and phenotypic analysis conducted to determine
deleterious SNPs and impact of amino acid substitution on
the structure and function of proteins identified rs2274223
(H1619R) as deleterious to protein coding as it induces structural
change in the C2 domain of PLCε, with the mutant residue
more positively charged than the wild-type residue (RMSD
score, 1.75 Å).Moreover, rs2274223 condenses the chromatinrepressing
PLCε expression in DSS. Briefly, this study presents
the impact of a single nucleotide transition at SNPs associated
with DSS on differential protein binding patterns with PLCE1
and MICB genes and on protein structure modification and their
possible role in the pathogenesis of DSS
Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.
Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities
Genetic variants in the TIRAP gene are associated with increased risk of sepsis-associated acute lung injury
<p>Abstract</p> <p>Background</p> <p>Toll like receptors (TLRs) signaling pathways, including the adaptor protein Mal encoded by the TIRAP gene, play a central role in the development of acute lung injury (ALI). Recently, the <it>TIRAP </it>variants have been described association with susceptibility to inflammatory diseases. The aim of this study was to investigate whether genetic variants in <it>TIRAP </it>are associated with the development of ALI.</p> <p>Methods</p> <p>A case-control collection from Han Chinese of 298 healthy subjects, 278 sepsis-associated ALI and 288 sepsis alone patients were included. Three tag single nucleotide polymorphisms (SNPs) of the TIRAP gene and two additional SNPs that have previously showed association with susceptibility to other inflammatory diseases were genotyped by direct sequencing. The differences of allele, genotype and haplotype frequencies were evaluated between three groups.</p> <p>Results</p> <p>The minor allele frequencies of both rs595209 and rs8177375 were significantly increased in ALI patients compared with both healthy subjects (odds ratio (OR) = 1.47, 95% confidence interval (CI):1.15-1.88, P = 0.0027 and OR = 1.97, 95% CI: (1.38-2.80), P = 0.0001, respectively) and sepsis alone patients (OR = 1.44, 95% CI: 1.12-1.85, P = 0.0041 and OR = 1.82, 95% CI: 1.28-2.57, P = 0.00079, respectively). Haplotype consisting of these two associated SNPs strengthened the association with ALI susceptibility. The frequency of haplotype AG (rs595209A, rs8177375G) in the ALI samples was significantly higher than that in the healthy control group (OR = 2.13, 95% CI: 1.46-3.09, P = 0.00006) and the sepsis alone group (OR = 2.24, 95% CI: 1.52-3.29, P = 0.00003). Carriers of the haplotype CA (rs595209C, rs8177375A) had a lower risk for ALI compared with healthy control group (OR = 0.69, 95% CI: 0.54-0.88, P = 0.0003) and sepsis alone group (OR = 0.71, 95% CI: 0.55-0.91, P = 0.0006). These associations remained significant after adjustment for covariates in multiple logistic regression analysis and for multiple comparisons.</p> <p>Conclusions</p> <p>These results indicated that genetic variants in the TIRAP gene might be associated with susceptibility to sepsis-associated ALI in Han Chinese population. However, the association needs to be replicated in independent studies.</p
Procalcitonin as a potent marker of bacterial infection in febrile Afro-Caribbean patients at the emergency department
Procalcitonin (PCT) has been shown to be of additional value in the work-up of a febrile patient. This study is the first to investigate the additional value of PCT in an Afro-Caribbean febrile population at the emergency department (ED) of a general hospital. Febrile patients were included at the ED. Prospective, blinded PCT measurements were performed in patients with a microbiologically or serologically confirmed diagnosis or a strongly suspected diagnosis on clinical grounds. PCT analysis was performed in 93 patients. PCT levels differentiated well between confirmed bacterial and confirmed viral infection (area under the curve [AUC] of 0.82, sensitivity 85%, specificity 69%, cut-off 0.24 ng/mL), between confirmed bacterial infection and non-infectious fever (AUC of 0.84, sensitivity 90%, specificity 71%, cut-off 0.21 ng/mL) and between all bacterial infections (confirmed and suspected) and non-infectious fever (AUC of 0.80, sensitivity 85%, specificity 71%, cut-off 0.21 ng/mL). C-reactive protein (CRP) levels were shown to be less accurate when comparing the same groups. This is the first study showing that, in a non-Caucasian febrile population at the ED, PCT is a more valuable marker of bacterial infection than CRP. These results may improve diagnostics and eventually decrease antibiotic prescriptions in resource-limited settings
- …
