1,612 research outputs found

    Method for calculation of drilling-and-blasting operations parameters for emulsion explosives

    Get PDF
    Purpose. Development of a new method for calculation of drilling-and-blasting operations parameters during underground mining with application of emulsion explosives taking into account their energy characteristics as well as physical and mechanical properties of rocks. Methods. The integrated methodological approach including analytical transformations of the received formulas for calculation of drilling-and-blasting operations parameters, their improvement and also computer modeling on the basis of a finite element method were used for the establishment of compression zones and formations of cracks in the massif around shots taking into account such energy characteristics of emulsion explosive as detonation velocity, explosion heat, density of the explosives, etc. Findings. The relative force coefficient was determined for the emulsion explosive of “Ukrainit” type taking into account the extent of detonation velocity realization, which allowed to calculate the necessary amount of explosives. On the basis of experimental data, consistent patterns of detonation velocity change depending on the charge density and diameter yielding to power law are determined for the emulsion explosive of “Ukrainit” type. Improvements have been made to the analytical expression determining the sizes of compression and fracturing zones around blast holes taking into account energy characteristics of the emulsion explosive of “Ukrainit” type as well as physical and mechanical properties of the blasted rocks. This allowed to develop a new algorithm of calculating parameters for drawing up the passport of drilling-and-blasting operations during underground mining. Originality. The method for calculating drilling-and-blasting operations parameters is based on the regularities of emulsion explosives energy characteristics change, the extent of detonation velocity realization as well as physical and mechanical properties of rocks. Practical implications. A new method has been developed for calculation of drilling-and-blasting operations parameters during mining with emulsion explosives application, which results in minimization of energy consumption for the mass breakage.Мета. Розробка нової методики розрахунку параметрів буропідривних робіт (БПР) при проведенні підземних гірничих виробок із використанням емульсійних вибухових речовин (ЕВР) з урахуванням їх енергетичних характеристик і фізико-механічних властивостей порід. Методика. У роботі використано комплексний методичний підхід, що включає аналітичні перетворення раніше отриманих формул розрахунку параметрів БПР та їх удосконалення, а також комп’ютерне моделювання на основі методу скінчених елементів зі встановлення зон зминання та утворення тріщин в масиві навколо шпурів з урахуванням енергетичних характеристик емульсійної вибухівки: швидкість детонації, теплота вибуху, щільність вибухових речовин (ВР) та ін. Результати. Визначено коефіцієнт відносної працездатності емульсійної вибухівки типу “Україніт” з урахуванням ступеня реалізації швидкості детонації, що дозволило визначити необхідну кількість ВР. На основі експериментальних даних встановлено закономірності зміни швидкості детонації від щільності та діаметру заряду для ЕВР типу “Україніт”, які змінюються за ступеневим законом. Удосконалено аналітичний вираз, що визначає розміри зон зминання та тріщин, які утворюються навколо шпурів з урахуванням енерге- тичних характеристик ЕВР “Україніт” і фізико-механічних властивостей порід, на чому ґрунтується подальший вдосконалений алгоритм розрахунку параметрів для складання паспорта БПР при проведенні підземних гірничих виробок. Наукова новизна. Полягає у використанні закономірностей зміни енергетичних властивостей ЕВР, ступеня реалізації швидкості детонації та фізико-механічних властивостей гірських порід при розробці методики розрахунку параметрів БПР. Практична значимість. Розроблено нову методику розрахунку параметрів БПР при проведенні гірничих виробок на основі використання ЕВР, що забезпечує мінімізацію енергетичних витрат на руйнування масиву.Цель. Разработка новой методики расчета параметров буровзрывных работ (БВР) при проведении подземных горных выработок с использованием эмульсионных взрывчатых веществ (ЭВВ) с учетом их энергетических характеристик и физико-механических свойств пород. Методика. В работе использован комплексный методический подход, включающий аналитические преобразования ранее полученных формул расчета параметров БВР и их усовершенствование, а также компьютерное моделирование на основе метода конечных элементов по установлению зон смятия и образования трещин в массиве вокруг шпуров с учетом энергетических характеристик ЭВВ: скорость детонации, теплота взрыва, плотность взрывчатых веществ (ВВ) и др. Результаты. Определен коэффициент относительной работоспособности ЭВВ типа “Украинит” с учетом степени реализации скорости детонации, что позволило определить необходимое количество ВВ. На основе экспериментальных данных установлены закономерности изменения скорости детонации от плотности и диаметра заряда для ЭВВ типа “Украинит”, которые изменяются по степенному закону. Усовершенствовано аналитическое выражение, определяющее размеры зон смятия и трещинообразования, образуемых вокруг шпуров с учетом энергетических характеристик ЭВВ “Украинит” и физико-механических свойств взрываемых пород, на чем основывается дальнейший усовершенствованный алгоритм расчета параметров для составления паспорта БВР при проведении подземных горных выработок. Научная новизна. Состоит в использовании закономерностей изменения энергетических характеристик ЭВВ, степени реализации скорости детонации и физико-механических свойств горных пород при разработке методики расчета параметров БВР. Практическая значимость. Разработана новая методика расчета параметров БВР при проведении горных выработок на основе использования ЭВВ, обеспечивающая минимизацию энергетических затрат на разрушение массива.The authors express their deepest gratitude to V.P. Kuprin, Doctor of Philosophy in Chemistry, Professor, State Prize Laureate of Ukraine in Science and Technology for providing research base and organizational support during industrial experiments

    Spiral-shaped wavefronts in a sunspot umbra

    Full text link
    Solar active regions show a wide variety of oscillatory phenomena. The presence of the magnetic field leads to the appearance of several wave modes, whose behavior is determined by the sunspot thermal and magnetic structure. We aim to study the relation between the umbral and penumbral waves observed at the high photosphere and the magnetic field topology of the sunspot. Observations of the sunspot in active region NOAA 12662 obtained with the GREGOR telescope (Observatorio del Teide, Spain) were acquired on 2017 June 17. The data set includes a temporal series in the Fe I 5435 \AA\ line obtained with the imaging spectrograph GREGOR Fabry-P\'erot Interferometer (GFPI) and a spectropolarimetric raster map acquired with the GREGOR Infrared Spectrograph (GRIS) in the 10830 \AA\ spectral region. The Doppler velocity deduced from the restored Fe I 5435 \AA\ line has been determined, and the magnetic field vector of the sunspot has been inferred from spectropolarimetric inversions of the Ca I 10839 \AA\ and the Si I 10827 \AA\ lines. A two-armed spiral wavefront has been identified in the evolution of the two-dimensional velocity maps from the Fe I 5435 \AA\ line. The wavefronts initially move counterclockwise in the interior of the umbra, and develop into radially outward propagating running penumbral waves when they reach the umbra-penumbra boundary. The horizontal propagation of the wavefronts approximately follows the direction of the magnetic field, which shows changes in the magnetic twist with height and horizontal position. The spiral wavefronts are interpreted as the visual pattern of slow magnetoacoustic waves which propagate upward along magnetic field lines. Their apparent horizontal propagation is due to their sequential arrival to different horizontal positions at the formation height of the Fe I 5435 \AA\ line, as given by the inclination and orientation of the magnetic field.Comment: Accepted for publication in A&

    Dynamics of the vortex line density in superfluid counterflow turbulence

    Full text link
    Describing superfluid turbulence at intermediate scales between the inter-vortex distance and the macroscale requires an acceptable equation of motion for the density of quantized vortex lines L\cal{L}. The closure of such an equation for superfluid inhomogeneous flows requires additional inputs besides L\cal{L} and the normal and superfluid velocity fields. In this paper we offer a minimal closure using one additional anisotropy parameter Il0I_{l0}. Using the example of counterflow superfluid turbulence we derive two coupled closure equations for the vortex line density and the anisotropy parameter Il0I_{l0} with an input of the normal and superfluid velocity fields. The various closure assumptions and the predictions of the resulting theory are tested against numerical simulations.Comment: 7 pages, 5 figure

    High frequency waves in the corona due to null points

    Full text link
    This work aims to understand the behavior of non-linear waves in the vicinity of a coronal null point. In previous works we have showed that high frequency waves are generated in such magnetic configuration. This paper studies those waves in detail in order to provide a plausible explanation of their generation. We demonstrate that slow magneto-acoustic shock waves generated in the chromosphere propagate through the null point and produce a train of secondary shocks that escape along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 mHz. We speculate that this frequency may be sensitive to the atmospheric parameters in the corona and therefore can be used to probe the structure of this solar layer

    Procedure of determining of the better orientation and working conditions of solar planes which are rotated around one axe

    Get PDF
    Стежать геліопріемние пристрої (трекери) розгортають сонячну панель таким чином, щоб нормаль приймальної поверхні була колінеарний вектору сонячного променя протягом усього світлового дня. Для реалізації цього завдання доводиться обертати панель щодо двох координатних осей. Обертання забезпечується механічними пристроями керованими фотоелектронним модулями. У даній роботі пропонується методика для визначення оптимальної конфігурації та режиму роботи одновісним панелей, при якій досягається максимальне отримання сонячної енергії протягом світлового року. Представляє практичний інтерес використовувати дану методику для знаходження дискретно-лінійної функції обертання одноосьового трекера, чий характер не змінюється протягом усього року, і як наслідок, не вимагає фотоелектронних модулів для управління механічним приводом.Sun tracking devices (trackers) are deploying solar panel so that the receiving surface normal vector was collinear sunlight throughout the daylight hours. To realize this task, the panel has to rotate on two axes. Rotation is provided by mechanical devices controlled by photoelectronic modules. In this paper we propose a method for determining the optimal configuration and operating mode single-axis panels at which the maximum of solar energy during daylight of the year. Is of practical interest to use this method to find discrete linear function of the rotation axis tracker, whose character does not change during the year, and as a consequence, does not require a photoelectric modules to control the mechanical drive.Следящие гелиоприемные устройства (трекеры) разворачивают солнечную панель таким образом, чтобы нормаль приемной поверхности была коллинеарной вектору солнечного луча на протяжении всего светового дня. Для реализации этой задачи приходится вращать панель относительно двух координатных осей. Вращение обеспечивается механическими устройствами управляемыми фотоэлектронными модулями. В данной работе предлагается методика для определения оптимальной конфигурации и режима работы одноосевых панелей, при которой достигается максимальное получение солнечной энергии в течение светового года. Представляет практический интерес использовать данную методику для нахождения дискретно-линейной функции вращения одноосевого трекера, чей характер не изменяется в течение всего года, и как следствие, не требует фотоэлектронных модулей для управления механическим приводом
    corecore