17 research outputs found

    Morpholine Radical in the Electrochemical Reaction with Quinoline <i>N</i>-Oxide

    No full text
    An electrochemical reaction between quinoline N-oxides and morpholine was developed by using Cu(OAc)2 as a catalyst, generating products of 4-aminoquinoline N-oxides in CH2Cl2 or 2-aminoquinoline N-oxides in CH3CN in good yields. With an increase in the amount of electricity passed, the product deoxygenates with the formation of aminoquinolines. The advantages of the reaction are mild conditions, room temperature, the use of morpholine rather than its derivatives, and the ability to control the process when the electrolysis conditions change. Bisubstituted quinoline has also been obtained. The redox properties of both individual participants of C–H/N–H cross-coupling and multicomponent systems were established by voltammetry and EPR methods. For the first time, the EPR spectrum of the morpholine radical was recorded at room temperature, and its magnetic resonance parameters were determined in CH2Cl2. Mechanisms for the catalytic reaction have been proposed. This is a simple and easy-to-perform method for introducing a morpholine substituent, important in medicinal chemistry and other fields, by C–H/N–H cross-coupling

    Photocatalytic Materials Based on g-C<sub>3</sub>N<sub>4</sub> Obtained by the One-Pot Calcination Method

    No full text
    Photocatalysts based on graphitic carbon nitride (g-C3N4) attracted considerable attention due to their efficiency in hydrogen production and decomposition of organic pollutants in aqueous solutions. In this work, a new approach to synthesis of g-C3N4-based heterostructures with improved photocatalytic properties was proposed. The properties of two different CdZnS/g-C3N4 and ZnIn2S4/g-C3N4 heterostructures synthesized and studied in the same conditions were compared. Pure g-C3N4 photocatalysts as well as CdZnS/g-C3N4 and ZnIn2S4/g-C3N4 heterostructures were synthesized using a one-pot method by calcining the mixture of the initial components. Photocatalytic properties of the synthesized substances were evaluated in a model reaction of rhodamine B decomposition induced by visible light. It was shown that ultrasonic treatment in the presence of a nonionic surfactant enhances the photocatalytic activity of g-C3N4 structures as a result of a higher photocatalyst dispersity. The electronic structures of the CdZnS/g-C3N4 and ZnIn2S4/g-C3N4 heterostructures were analyzed in detail. The photocatalytic activity of heterostructures was found to be 2–3-fold higher as compared with an unmodified g-C3N4 due to formation of a type II heterojunction and Z-scheme structures. Decomposition of rhodamine B occurred mostly via formation of active oxygen radicals by irradiation

    Synthetic Tuning of CoII-Doped Silica Nanoarchitecture Towards Electrochemical Sensing Ability

    No full text
    The present work introduces both synthesis of silica nanoparticles doped with CoII ions by means of differently modified microemulsion water-in-oil (w/o) and St&ouml;ber techniques and characterization of the hybrid nanoparticles (CoII@SiO2) by TEM, DLS, XRD, ICP-EOS, SAXS, UV-Vis, and UV-Vis/DR spectroscopy and electrochemical methods. The results reveal the lack of nanocrystalline dopants inside the hybrid nanoparticles, as well as no ligands, when CoII ions are added to the synthetic mixtures as CoII(bpy)3 complexes, thus pointing to coordination of CoII ions with Si-O- groups as main driving force of the doping. The UV-Vis/DR spectra of CoII@SiO2 in the range of d-d transitions indicate that St&ouml;ber synthesis in greater extent than the w/o one stabilizes tetrahedral CoII ions versus the octahedral ions. Both cobalt content and homogeneity of the CoII distribution within CoII@SiO2 are greatly influenced by the synthetic technique. The electrochemical behavior of CoII@SiO2 is manifested by one oxidation and two reduction steps, which provide the basis for electrochemical response on glyphosate and HP(O)(OEt)2 with the LOD = 0.1 &mu;M and the linearity within 0.1&ndash;80 &mu;M. The St&ouml;ber CoII@SiO2 are able to discriminate glyphosate from HP(O)(OEt)2, while the w/o nanoparticles are more efficient but nonselective sensors on the toxicants

    Fluorescent magnetic nanoparticles for modulating the level of intracellular Ca2+ in motoneurons

    No full text
    This report introduces both synthesis and in vitro biological behaviour of dual magnetic-fluorescent silica nanoparticles. The amino group-decoration of 78 nm sized silica nanoparticles enables their efficient internalization into motoneurons, which is visualized by the red fluorescence arising from [Ru(dipy)(3)](2+) complexes encapsulated into a silica matrix. The internalized nanoparticles are predominantly located in the cell cytoplasm as revealed by confocal microscopy imaging. The magnetic function of the nanoparticles resulted from the incorporation of 17 nm sized superparamagnetic iron oxide cores into the silica matrix, enabling their responsivity to magnetic fields. Fluorescence analysis revealed the "on-off" switching of Ca2+ influx under the application and further removal of the permanent magnetic field. This result for the first time highlights the movement of the nanoparticles within the cell cytoplasm in the permanent magnetic field as a promising tool to enhance the neuronal activity of motoneurons.Web of Science1134161131610

    Silica-Supported Assemblage of CuII Ions with Carbon Dots for Self-Boosting and Glutathione-Induced ROS Generation

    No full text
    The present work introduces coordinative binding of CuII ions with both amino-functionalized silica nanoparticles (SNs) and green-emitting carbon dots (CDs) as the pregrequisite for the CuII-assisted self-assembly of the CDs at the surface of the SNs. The produced composite SNs exhibit stable in time stimuli-responsive green fluorescence derived from the CuII-assisted assemblage of CDs. The fluorescence response of the composite SNs is sensitive to the complex formation with glutathione (GSH), enabling them to detect it with the lower limit of detection of 0.15 &mu;M. The spin-trap-facilitated electron spin resonance technique indicated that the composite SNs are capable of self-boosting generation of ROS due to CuII&rarr;CuI reduction by carbon in low oxidation states as a part of the CDs. The intensity of the ESR signals is enhanced under the heating to 38 &deg;C. The intensity is suppressed at the GSH concentration of 0.35 mM but is enhanced at 1.0 mM of glutathione, while it is suppressed once more at the highest intracellular concentration level of GSH (10 mM). These tendencies reveal the concentrations optimal for the scavenger or reductive potential of GSH. Flow cytometry and fluorescence and confocal microscopy methods revealed efficient cell internalization of SNs-NH2-CuII-CDs comparable with that of &ldquo;free&rdquo; CDs

    T2- and T1 relaxivities and magnetic hyperthermia of iron-oxide nanoparticles combined with paramagnetic Gd complexes

    No full text
    The present paper reports the synthesis of iron-oxide nanoparticles (diameter 12.8 +/- 2.2 nm) coated with silica shell doped with paramagnetic Gd(III)-based complexes. The resulting nanoparticles with a silica shell thickness of about 45 nm have an average diameter of 113.1 +/- 14.3 nm and feature high transverse and longitudinal relaxivities (356 and 25 mM(-1) s(-1), respectively) at 1.5 T and 25 degrees C on a medical whole body NMR scanner. It has been also revealed using magnetic heating measurements that the prepared core-shell nanoparticles possess a high specific adsorption rate of around 236 W/g in aqueous media. The surface of the composite nanoparticles was decorated by amino-groups for a greater cellular uptake behaviour. The cell viability measurements reveal the concentration-dependent cytotoxicity of the nanoparticles, which agrees well with the high content of Gd(III) complexes in the nanomaterial. The obtained results show that the core-shell design of nanoparticles with superparamagnetic and paramagnetic parts can be promising for high transverse (and longitudinal) relaxivity as well as magnetic hyperthermia.Web of Science1332art. no. 4

    pH-Driven Intracellular Nano-to-Molecular Disassembly of Heterometallic [Au2L2]{Re6Q8} Colloids (L = PNNP Ligand; Q = S2&minus; or Se2&minus;)

    No full text
    The present work introduces a simple, electrostatically driven approach to engineered nanomaterial built from the highly cytotoxic [Au2L2]2+ complex (Au2, L = 1,5-bis(p-tolyl)&minus;3,7-bis(pyridine-2-yl)&minus;1,5-diaza-3,7-diphosphacyclooctane (PNNP) ligand) and the pH-sensitive red-emitting [{Re6Q8}(OH)6]4&minus; (Re6-Q, Q = S2&minus; or Se2&minus;) cluster units. The protonation/deprotonation of the Re6-Q unit is a prerequisite for the pH-triggered assembly of Au2 and Re6-Q into Au2Re6-Q colloids, exhibiting disassembly in acidic (pH = 4.5) conditions modeling a lysosomal environment. The counter-ion effect of polyethylenimine causes the release of Re6-Q units from the colloids, while the binding with lysozyme restricts their protonation in acidified conditions. The enhanced luminescence response of Re6-S on the disassembly of Au2Re6-S colloids in the lysosomal environment allows us to determine their high lysosomal localization extent through the colocalization assay, while the low luminescence of Re6-Se units in the same conditions allows us to reveal the rapture of the lysosomal membrane through the use of the Acridine Orange assay. The lysosomal pathway of the colloids, followed by their endo/lysosomal escape, correlates with their cytotoxicity being on the same level as that of Au2 complexes, but the contribution of the apoptotic pathway differentiates the cytotoxic effect of the colloids from that of the Au2 complex arisen from the necrotic processes

    Molecular and Nano-Structural Optimization of Nanoparticulate Mn2+-Hexarhenium Cluster Complexes for Optimal Balance of High T1- and T2-Weighted Contrast Ability with Low Hemoagglutination and Cytotoxicity

    No full text
    The present work introduces rational design of nanoparticulate Mn(II)-based contrast agents through both variation of the &mu;3 (inner) ligands within a series of hexarhenium cluster complexes [{Re6(&mu;3-Q)8}(CN)6]4&minus; (Re6Q8, Q = S2&minus;, Se2&minus; or Te2&minus;) and interfacial decoration of the nanoparticles (NPs) K4&minus;2xMnxRe6Q8 (x = 1.3 &minus; 1.8) by a series of pluronics (F-68, P-123, F-127). The results highlight an impact of the ligand and pluronic for the optimal colloid behavior of the NPs allowing high colloid stability in ambient conditions and efficient phase separation under the centrifugation. It has been revealed that the K4&minus;2xMnxRe6Se8 NPs and those decorated by F-127 are optimal from the viewpoint of magnetic relaxivities r1 and r2 (8.9 and 10.9 mM&minus;1s&minus;1, respectively, at 0.47 T) and low hemoagglutination activity. The insignificant leaching of Mn2+ ions from the NPs correlates with their insignificant effect on the cell viability of both M-HeLa and Chang Liver cell lines. The T1- and T2-weighted contrast ability of F-127&ndash;K4&minus;2xMnxRe6Q8 NPs was demonstrated through the measurements of phantoms at whole body 1.5 T scanner

    The Phosphinate Group in the Formation of 2D Coordination Polymer with Sm(III) Nodes: X-ray Structural, Electrochemical and Mössbauer Study

    No full text
    A coordination polymer has been synthesized using ferrocene-based ligand-bearing phosphinic groups of 1,1′-ferrocene-diyl-bis(H-phosphinic acid)), and samarium (III). The coordination polymer’s structure was studied by both single-crystal and powder XRD, TG, IR, and Raman analyses. For the first time, the Mössbauer effect studies were performed on ferrocenyl phosphinate and the polymer based on it. Additionally, the obtained polymer was studied by the method of cyclic and differential pulse voltammetry. It is shown that it has the most positive potential known among ferrocenyl phosphinate-based coordination polymers and metal–organic frameworks. Using the values of the oxidation potential, the polymer was oxidized and the ESR method verified the oxidized Fe(III) form in the solid state. Additionally, the effect of the size of the phosphorus atom substituent of the phosphinate group on the dimension of the resulting coordination compounds is shown

    Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells

    No full text
    A number of nickel complexes of sodium pectate with varied Ni2+ content have been synthesized and characterized. The presence of the proton conductivity, the possibility of the formation of a dense spatial network of transition metals in these coordination biopolymers, and the immobilization of transition ions in the catalytic sites of this class of compounds make them promising for proton-exchange membrane fuel cells. It has been established that the catalytic system composed of a coordination biopolymer with 20% substitution of sodium ions for divalent nickel ions, Ni (20%)-NaPG, is the leading catalyst in the series of 5, 15, 20, 25, 35% substituted pectates. Among the possible reasons for the improvement in performance the larger specific surface area of this sample compared to the other studied materials and the narrowest distribution of the vertical size of metal arrays were registered. The highest activity during CV and proximity to four-electron transfer during the catalytic cycle have also been observed for this compound
    corecore