17 research outputs found

    Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus Germplasm Grown in Six Countries

    Get PDF
    The development of models to predict yield potential and quality of a Miscanthus crop must consider climatic limitations and the duration of growing season. As a biomass crop, yield and quality are impacted by the timing of plant developmental transitions such as flowering and senescence. Growth models are available for the commercially grown clone Miscanthus x giganteus (Mxg), but breeding programs have been working to expand the germplasm available, including development of interspecies hybrids. The aim of this study was to assess the performance of diverse germplasm beyond the range of environments considered suitable for a Miscanthus crop to be grown. To achieve this, six field sites were planted as part of the EU OPTIMISC project in 2012 in a longitudinal gradient from West to East: Wales?Aberystwyth, Netherlands?Wageningen, Stuttgart?Germany, Ukraine?Potash, Turkey?Adana, and Russia?Moscow. Each field trial contained three replicated plots of the same 15 Miscanthus germplasm types. Through the 2014 growing season, phenotypic traits were measured to determine the timing of developmental stages key to ripening; the tradeoff between growth (yield) and quality (biomass ash and moisture content). The hottest site (Adana) showed an accelerated growing season, with emergence, flowering and senescence occurring before the other sites. However, the highest yields were produced at Potash, where emergence was delayed by frost and the growing season was shortest. Flowering triggers varied with species and only in Mxg was strongly linked to accumulated thermal time. Our results show that a prolonged growing season is not essential to achieve high yields if climatic conditions are favorable and in regions where the growing season is bordered by frost, delaying harvest can improve quality of the harvested biomasspublishersversionPeer reviewe

    Progress on optimizing miscanthus biomass production for the European bioeconomy:Results of the EU FP7 project OPTIMISC

    Get PDF
    This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthusbased value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eqC ha(-1) y(-1) and 429 GJ ha(-1)y(-1), respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of-78 epsilon t(-1) CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains

    Protected Long-Distance Guiding of Hypersound Underneath a Nanocorrugated Surface

    Get PDF
    In nanoscale communications, high-frequency surface acoustic waves are becoming effective data carriers and encoders. On-chip communications require acoustic wave propagation along nanocorrugated surfaces which strongly scatter traditional Rayleigh waves. Here, we propose the delivery of information using subsurface acoustic waves with hypersound frequencies of ∼20 GHz, which is a nanoscale analogue of subsurface sound waves in the ocean. A bunch of subsurface hypersound modes are generated by pulsed optical excitation in a multilayer semiconductor structure with a metallic nanograting on top. The guided hypersound modes propagate coherently beneath the nanograting, retaining the surface imprinted information, at a distance of more than 50 μm which essentially exceeds the propagation length of Rayleigh waves. The concept is suitable for interfacing single photon emitters, such as buried quantum dots, carrying coherent spin excitations in magnonic devices and encoding the signals for optical communications at the nanoscale

    Grid-characteristic Method on Joint Structured Regular and Curved Grids for Modeling Coupled Elastic and Acoustic Wave Phenomena in Objects of Complex Shape

    No full text
    This work is devoted to the modification of the grid-characteristic numerical method. We propose using joint structured regular and curved computational grids to describe the complex geometric shape of objects and save computing resources. In subdomains, where possible, we propose use structured regular computational grids conformal with structured curved grids. Moreover, we use different calculation algorithms in subdomains with structured regular grids and with curved grids. The elastic and acoustic wave equations are also jointly solved in various subdomains of the integration domain for a more accurate description of the simulated model. We use the corresponding contact conditions at the boundaries between subdomains with different types of computational grids, different solved systems of equations, and different elastic and acoustic parameters of the media. We have proved in this paper the equivalence of using the contact condition of complete adhesion with the absence of an interface in the case of the same elastic and acoustic properties. The proposed modification of the grid-characteristic method was tested on the problems of studying the earthquake resistance of a bridge over a river and a bridge over a highway

    Grid-Characteristic Method on Overlapping Curvilinear Meshes for Modeling Elastic Waves Scattering on Geological Fractures

    No full text
    Interest in computational methods for calculating wave scattering from fractured geological clusters is due to their application in processing and interpreting the data obtained during seismic prospecting of hydrocarbon and other mineral deposits. In real calculations, numerical methods on structured, regular (Cartesian) computational grids are used to conserve computational resources though these methods do not correctly model the scattering of elastic waves from fractures that are not co-directed to the coordinate axes. The use of computational methods on other types of grids requires an increase in computational resources, which is unacceptable for the subsequent solution of inverse problems. This article is devoted to a possible solution to this problem. We suggest a novel modification of a computational grid-characteristic method on overlapping curvilinear grids. In the proposed approach, a small overlapping curvilinear grid is placed around a fracture that smoothly merges into the surrounding Cartesian background mesh, which helps to avoid interpolation between the background and overlapping meshes. This work presents the results of testing this method, which showed its high accuracy. The disadvantages of the developed method include the limited types of fractured clusters for which this method can be applied since the overlapping meshes should not intersect. However, clusters of subvertical fractures are usually found in nature; therefore, the developed method is applicable in most cases

    Grid-Characteristic Method on Overlapping Curvilinear Meshes for Modeling Elastic Waves Scattering on Geological Fractures

    No full text
    Interest in computational methods for calculating wave scattering from fractured geological clusters is due to their application in processing and interpreting the data obtained during seismic prospecting of hydrocarbon and other mineral deposits. In real calculations, numerical methods on structured, regular (Cartesian) computational grids are used to conserve computational resources though these methods do not correctly model the scattering of elastic waves from fractures that are not co-directed to the coordinate axes. The use of computational methods on other types of grids requires an increase in computational resources, which is unacceptable for the subsequent solution of inverse problems. This article is devoted to a possible solution to this problem. We suggest a novel modification of a computational grid-characteristic method on overlapping curvilinear grids. In the proposed approach, a small overlapping curvilinear grid is placed around a fracture that smoothly merges into the surrounding Cartesian background mesh, which helps to avoid interpolation between the background and overlapping meshes. This work presents the results of testing this method, which showed its high accuracy. The disadvantages of the developed method include the limited types of fractured clusters for which this method can be applied since the overlapping meshes should not intersect. However, clusters of subvertical fractures are usually found in nature; therefore, the developed method is applicable in most cases

    Nematic Ordering of Polymers in Confined Geometry Applied to DNA Packaging in Viral Capsids.

    No full text
    A density functional theory of the spatial distribution and biaxial nematic order of polymers of arbitrary length and rigidity inside a spherical cavity is proposed. The local order of different chain segments is considered as an alignment to a spatially varying director field of cylindrical symmetry. The steric interactions are taken into account in the second virial approximation. Polymer density and orientational order distributions inside the spherically cavity are the principal results. It was found that short and flexible polymers were located at the center of the sphere and were orientationaly disordered. Upon increasing polymer length and/or polymer rigidity, the location of the polymer was continuously shifted toward the surface of the spherical cavity and the polymer segments became gradually more aligned. Parameters have been selected to model the behavior of genomes in spherical viral capsids

    Application of special lubricating compositions to increase the efficiency of friction surface run-in

    No full text
    The paper presents the results of laboratory studies of a number of additives introduced during operation to motor oil of internal combustion engines. It also evaluates their impact on tribological characteristics of friction pairs. It was found that all studied additives have a positive effect on the running-in quality. Reduced wear of friction pairs, reduced surface roughness compared to base motor oil is determined. The best indicators were recorded with the FENOM additive. The decrease in wear was 46% and roughness – 23.5% compared to the base oil

    Molten Chlorides as the Precursors to Modify the Ionic Composition and Properties of LiNbO3 Single Crystal and Fine Powders

    No full text
    Modifying lithium niobate cation composition improves not only the functional properties of the acousto- and optoelectronic materials as well as ferroelectrics but elevates the protonic transfer in LiNbO3-based electrolytes of the solid oxide electrochemical devices. Molten chlorides and other thermally stable salts are not considered practically as the precursors to synthesize and modify oxide compounds. This article presents and discusses the results of an experimental study of the full or partial heterovalent substitution of lithium ion in nanosized LiNbO3 powders and in the surface layer of LiNbO3 single crystal using molten salt mixtures containing calcium, lead, and rare-earth metals (REM) chlorides as the precursors. The special features of heterovalent ion exchange in chloride melts are revealed such as hetero-epitaxial cation exchange at the interface PbCl2-containing melt/lithium niobate single crystal; the formation of Li(1−x) Ca(x/2)V(x/2)Li+ NbO3 solid solutions with cation vacancies as an intermediate product of the reaction of heterovalent substitution of lithium ion by calcium in LiNbO3 powders; the formation of lanthanide orthoniobates with a tetragonal crystal structure such as scheelite as the result of lithium niobate interaction with trichlorides of rare-earth elements. It is shown that the fundamental properties of ion-modifiers (ion radius, nominal charge), temperature, and duration of isothermal treatment determine the products’ chemical composition and the rate of heterovalent substitution of Li+-ion in lithium niobate
    corecore