10 research outputs found
Models of Star-Planet Magnetic Interaction
Magnetic interactions between a planet and its environment are known to lead
to phenomena such as aurorae and shocks in the solar system. The large number
of close-in exoplanets that were discovered triggered a renewed interest in
magnetic interactions in star-planet systems. Multiple other magnetic effects
were then unveiled, such as planet inflation or heating, planet migration,
planetary material escape, and even modification of the host star properties.
We review here the recent efforts in modelling and understanding magnetic
interactions between stars and planets in the context of compact systems. We
first provide simple estimates of the effects of magnetic interactions and then
detail analytical and numerical models for different representative scenarii.
We finally lay out a series of future developments that are needed today to
better understand and constrain these fascinating interactions.Comment: 23 pages, 10 figures, accepted as a chapter in the Handbook of
Exoplanet
Opening a new window to other worlds with spectropolarimetry
A high level of diversity has already been observed among the planets of our
own Solar System. As such, one expects extrasolar planets to present a wide
range of distinctive features, therefore the characterisation of Earth- and
super Earth-like planets is becoming of key importance in scientific research.
The SEARCH (Spectropolarimetric Exoplanet AtmospheRe CHaracerisation) mission
proposal of this paper represents one possible approach to realising these
objectives. The mission goals of SEARCH include the detailed characterisation
of a wide variety of exoplanets, ranging from terrestrial planets to gas
giants. More specifically, SEARCH will determine atmospheric properties such as
cloud coverage, surface pressure and atmospheric composition, and may also be
capable of identifying basic surface features. To resolve a planet with a semi
major axis of down to 1.4AU and 30pc distant SEARCH will have a mirror system
consisting of two segments, with elliptical rim, cut out of a parabolic mirror.
This will yield an effective diameter of 9 meters along one axis. A phase mask
coronagraph along with an integral spectrograph will be used to overcome the
contrast ratio of star to planet light. Such a mission would provide invaluable
data on the diversity present in extrasolar planetary systems and much more
could be learned from the similarities and differences compared to our own
Solar System. This would allow our theories of planetary formation, atmospheric
accretion and evolution to be tested, and our understanding of regions such as
the outer limit of the Habitable Zone to be further improved.Comment: 23 pages, accepted for publication in Experimental Astronom
Stellar Coronal and Wind Models: Impact on Exoplanets
Surface magnetism is believed to be the main driver of coronal heating and
stellar wind acceleration. Coronae are believed to be formed by plasma confined
in closed magnetic coronal loops of the stars, with winds mainly originating in
open magnetic field line regions. In this Chapter, we review some basic
properties of stellar coronae and winds and present some existing models. In
the last part of this Chapter, we discuss the effects of coronal winds on
exoplanets.Comment: Chapter published in the "Handbook of Exoplanets", Editors in Chief:
Juan Antonio Belmonte and Hans Deeg, Section Editor: Nuccio Lanza. Springer
Reference Work
Hydrogen dominated atmospheres on terrestrial mass planets: evidence, origin and evolution
The discovery of thousands of highly irradiated, low-mass, exoplanets has led to the idea that atmospheric escape is an important process that can drive their evolution. Of particular interest is the inference from recent exoplanet detections that there is a large population of low mass planets possessing significant, hydrogen dominated atmospheres, even at masses as low as ∼2 M⊕. The size of these hydrogen dominated atmospheres indicates the envelopes must have been accreted from the natal protoplanetary disc. This inference is in contradiction with the Solar System terrestrial planets, that did not reach their final masses before disc dispersal, and only accreted thin hydrogen dominated atmospheres. In this review, we discuss the evidence for hydrogen dominated atmospheres on terrestrial mass (≲2 M⊕) planets. We then discuss the possible origins and evolution of these atmospheres with a focus on the role played by hydrodynamic atmospheric escape driven by the stellar high-energy emission (X-ray and EUV; XUV)
What makes a planet habitable?
This work reviews factors which are important for the evolution of habitable Earth-like planets such as the effects of the host star dependent radiation and particle fluxes on the evolution of atmospheres and initial water inventories. We discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets. The discoveries of methane–ethane surface lakes on Saturn’s large moon Titan, subsurface water oceans or reservoirs inside the moons of Solar System gas giants such as Europa, Ganymede, Titan and Enceladus and more than 335 exoplanets, indicate that the classical definition of the habitable zone concept neglects more exotic habitats and may fail to be adequate for stars which are different from our Sun. A classification of four habitat types is proposed. Class I habitats represent bodies on which stellar and geophysical conditions allow Earth-analog planets to evolve so that complex multi-cellular life forms may originate. Class II habitats includes bodies on which life may evolve but due to stellar and geophysical conditions that are different from the class I habitats, the planets rather evolve toward Venus- or Mars-type worlds where complex life-forms may not develop. Class III habitats are planetary bodies where subsurface water oceans exist which interact directly with a silicate-rich core, while class IV habitats have liquid water layers between two ice layers, or liquids above ice. Furthermore, we discuss from the present viewpoint how life may have originated on early Earth, the possibilities that life may evolve on such Earth-like bodies and how future space missions may discover manifestations of extraterrestrial life