26 research outputs found

    Heteroepitaxial Growth Of Colloidal Nanocrystals Onto Substrate Films Via Hot-injection Routes

    Get PDF
    Hot-injection synthesis of colloidal nanocrystals (NCs) in a substrate-bound form is demonstrated. We show that polycrystalline films submerged into hot organic solvents can nucleate the heteroepitaxial growth of semiconductor NCs, for which the ensuing lattice quality and size distribution are on the par with those of isolated colloidal nanoparticles. This strategy is demonstrated by growing lead chalcogenide NCs directly onto solvent-submerged TiO(2) substrates. The resulting PbX/VTiO(2) (X = S, Se, Te) nanocomposites exhibit heteroepitaxial interfaces between lead chalcogenide and oxide domains and show an efficient separation of photoinduced charges, deployable for light-harvesting applications. The extendibility of the present method to other material systems was demonstrated through the synthesis of CdS/TiO(2) and Cu(2)S/TiO(2) heterostructures, fabricated from PbS/TiO(2) composites via cation exchange. The photovoltaic performance of nanocrystal/substrate composites comprising PbS NCs was evaluated by incorporating PbS/TiO2 films Into prototype solar cells

    Photocatalytic Hydrogen Production at Titania-Supported Pt Nanoclusters that are Derived from Surface-Anchored Molecular Precursors

    Get PDF
    Degussa P-25 TiO2 bearing surface-anchored Pt(dcbpy)Cl-2 [dcbpy = 4,4\u27-dicarboxylic acid-2,2\u27-bipyridine] prepared with systematically varied surface coverage produced Pt-0 nanoparticles under bandgap illumination in the presence of methanol hole scavengers. Energy-dispersive X-ray spectroscopy confirmed the presence of elemental platinum in the newly formed nanoparticles during scanning transmission electron microscopy (STEM) eleriments. According to the statistical analysis of numerous STEM images, the Pt-0 nanoclusters were distributed in a segregated manner throughout the titania surface, ranging in size from 1 to 3 nm in diameter. The final achieved nanoparticle size and net hydrogen production were determined as a function of the Pt(dcbpy)Cl-2 surface coverage as well as other systematically varied experimental parameters. The hybrid Pt/TiO2 nanomaterials obtained upon complete decomposition of the Pt(dcbpy)Cl-2 precursor displayed higher photocatalytic activity (300 mu mol/h) for hydrogen evolution in aqueous suspensions when compared with platinized TiO2 derived from H2PtCl6 precursors (130 mu mol/h), as ascertained through gas chromatographic analysis of the photoreactor headspace under identical experimental conditions. The conclusion that H-2 was evolved from Pt-0 sites rather than from molecular Pt(dcbpy)Cl-2 entities was independently supported by Hg and CO poisoning experiments. The formation of small Pt nanopartides (1.5 nm in diameter) prevail at low surface coverage of Pt(dcbpy)Cl-2 on TiO2 (0.5 to 2% by mass) that exhibit enhanced turnover frequencies with respect to all other materials investigated, induding those produced from the in situ photochemical reduction of H2PtCl6 center dot Pt-II precursor absorption in the ultraviolet region appeared to be partially responsible for attenuation of the H-2 evolution rate at higher Pt(dcbpy)Cl-2 surface coverage. The nanoparticle size and hydrogen evolution characteristics of the surface-anchored materials generated through photodeposition were directly compared with those derived from chemical reduction using NaBH4. Finally, Degussa P-25 thin films deposited on FTO substrates enabled electrochemically induced (-1.0 V vs Ag/AgCl, pH 7.0, phosphate buffer) electron trapping (TiO2(e(-))) throughout the titania. After removal of the applied bias and the anaerobic introduction of Pt(dcbpy)Cl-2, the accumulated electrons reduce this molecular species to Pt-0 nanoparticles on the titania electrode surface, as confirmed by TEM measurements, with the concomitant production of H-2 gas. The combined experiments illustrate that TiO2(e(-)) generated with bandgap excitation or via electrochemical bias affords the reduction of Pt(dcbpy)Cl-2 to Pt-0 nanoparticles that in turn are responsible for heterogeneous hydrogen gas evolution

    Improving The Catalytic Activity Of Semiconductor Nanocrystals Through Selective Domain Etching

    Get PDF
    Colloidal chemistry offers an assortment of synthetic tools for tuning the shape of semiconductor nanocrystals. While many nanocrystal architectures can be obtained directly via colloidal growth, other nanoparticle morphologies require alternative processing strategies. Here, we show that chemical etching of colloidal nanoparticles can facilitate the realization of nanocrystal shapes that are topologically inaccessible by hot-injection techniques alone. The present methodology is demonstrated by synthesizing a two-component CdSe/CdS nanoparticle dimer, constructed in a way that both CdSe and CdS semiconductor domains are exposed to the external environment. This structural morphology is highly desirable for catalytic applications as it enables both reductive and oxidative reactions to occur simultaneously on dissimilar nanoparticle surfaces. Hydrogen production tests confirmed the improved catalytic activity of CdSe/CdS dimers, which was enhanced 3-4 times upon etching treatment. We expect that the demonstrated application of etching to shaping of colloidal heteronanocrystals can become a common methodology in the synthesis of charge-separating nanocrystals, leading to advanced nanoparticles architectures for applications in areas of photocatalysis, photovoltaics, and light detection

    The Role of Hole Localization in Sacrificial Hydrogen Production by Semiconductor-Metal Heterostructured Nanocrystals

    Get PDF
    The effect of hole localization on photocatalytic activity of Pt-tipped semiconductor nanocrystals is investigated. By tuning the energy balance at the semiconductor-ligand interface, we demonstrate that hydrogen production on Pt sites is efficient only when electron-donating molecules are used for stabilizing semiconductor surfaces. These surfactants play an important role in enabling an efficient and stable reduction of water by heterostructured nanocrystals as they fill vacancies in the valence band of the semiconductor domain, preventing its degradation. In particular, we show that the energy of oxidizing holes can be efficiently transferred to a ligand moiety, leaving the semiconductor domain intact. This allows reusing the inorganic portion of the degraded nanocrystal-ligand system simply by recharging these nanoparticles with fresh ligands

    Photocatalytic Activity Of Core/shell Semiconductor Nanocrystals Featuring Spatial Separation Of Charges

    Get PDF
    The present study investigates the photocatalytic activity of ZnSe/CdS core/shell semiconductor nanocrystals. These nanoparticles exhibit a spatial separation of photoinduced charges between the core and the shell domains, which makes them potentially viable for photocatalytic applications. Unfortunately, one of the excited charges remains inside the core semiconductor and thus cannot efficiently react with the external environment. Here, we explore this issue by investigating the mechanisms of hole extraction from the ZnSe core to the surface of the CdS shell. In particular, the effect of shell thickness in ZnSe/CdS core/shell nanocrystals on the ability of core-localized charges to perform oxidative reactions was determined. By using a combination of time-resolved spectroscopy and electrochemical techniques, we demonstrate that the use of hole-scavenging surfactants facilitates an efficient transfer of core-localized holes to the surface even in the case of shells exceeding 7 nm in thickness. These measurements further demonstrate that photoinduced holes can be extracted from the core faster than they recombine with shell-localized electrons, indicating that most of the absorbed energy in ZnSe/CdS nanocrystals can be used to drive catalytic reactions

    Risk Assessment of Phthalates and Their Metabolites in Hospitalized Patients: A Focus on Di- and Mono-(2-ethylhexyl) Phthalates Exposure from Intravenous Plastic Bags

    No full text
    Phthalate esters (PAEs) are plasticizers associated with multiple toxicities; however, no strict regulations have been implemented to restrict their use in medical applications in Lebanon. Our study aimed at assessing the potential risks correlated with phthalate exposure from IV bags manufactured in Lebanon. GC–MS analysis showed that di-(2-ethylhexyl) phthalate (DEHP) is the predominant phthalate found in almost all samples tested with values ranging from 32.8 to 39.7% w/w of plastic. DEHP concentrations in the IV solutions reached up to 148 µg/L, as measured by SPME-GC–MS/MS, thus resulting in hazard quotients greater than 1, specifically in neonates. The toxicity of DEHP is mainly attributed to its metabolites, most importantly mono-(2-ethylhexyl) phthalate (MEHP). The IV bag solution with the highest content in DEHP was therefore used to extrapolate the amounts of urinary MEHP. The highest concentrations were found in neonates having the lowest body weight, which is concerning, knowing the adverse effects of MEHP in infants. Our study suggests that the use of IV bags manufactured in Lebanon could pose a significant risk in hospitalized patients, especially infants in neonatal care. Therefore, Lebanon, as well as other countries, should start imposing laws that restrict the use of phthalates in medical IV bags and substitute them with less toxic plasticizers

    Robust Cuprous Phenanthroline Sensitizer for Solar Hydrogen Photocatalysis

    No full text
    The Cu­(I) metal-to-ligand charge-transfer complex, [Cu­(dsbtmp)<sub>2</sub>]<sup>+</sup> (dsbtmp = 2,9-di­(<i>sec</i>-butyl)-3,4,7,8-tetramethyl-1,10-phenanthroline), exhibits outstanding stability as a visible-light-absorbing photosensitizer in hydrogen-evolving homogeneous photocatalysis. In concert with the Co­(dmgH)<sub>2</sub>(py)Cl water reduction catalyst and <i>N,N</i>-dimethyl-<i>p</i>-toluidine sacrificial donor in 1:1 H<sub>2</sub>O:CH<sub>3</sub>CN, this Cu­(I) sensitizer remains active even after 5 days of visible-light-pumped (λ<sub>ex</sub> = 452 ± 10 nm) hydrogen evolution catalysis. Deuteration studies illustrate that the hydrogen produced from this composition does indeed originate from aqueous protons

    Getting to the (Square) Root of the Problem: How to Make Noncoherent Pumped Upconversion Linear

    No full text
    We present experimental data illustrating that photochemical upconversion based on sensitized triplet–triplet annihilation can exhibit anti-Stokes emissions whose intensities with respect to the excitation power can vary between quadratic and linear using a noncoherent polychromatic light source. The benchmark upconverting composition consisting of Pd­(II) octaethylporphyrin (PdOEP) sensitizers and 9,10-diphenylanthracene (DPA) acceptors/annihilators in toluene was selected to generate quadratic, intermediate, and linear behavior under both coherent and noncoherent excitation conditions. Each of these power laws was traversed in a single sample in one contiguous experiment through selective pumping of the sensitizer using an Ar<sup>+</sup> laser. Wavelength-dependent responses ranging from quadratic to pseudolinear were also recorded from the identical sample composition when excited by Xe lamp/monochromator output in a conventional fluorimeter, where the optical density at λ<sub>ex</sub> dictates the observed incident power dependence. Finally, pure linear behavior was derived from noncoherent excitation for the first time at higher sensitizer concentrations

    Plasma and urine metabolomic analyses in aortic valve stenosis reveal shared and biofluid-specific changes in metabolite levels.

    No full text
    Aortic valve stenosis (AVS) is a prevalent condition among the elderly population that eventually requires aortic valve replacement. The lack of reliable biomarkers for AVS poses a challenge for its early diagnosis and the application of preventive measures. Untargeted gas chromatography mass spectrometry (GC-MS) metabolomics was applied in 46 AVS cases and 46 controls to identify plasma and urine metabolites underlying AVS risk. Multivariate data analyses were performed on pre-processed data (e.g. spectral peak alignment), in order to detect changes in metabolite levels in AVS patients and to evaluate their performance in group separation and sensitivity of AVS prediction, followed by regression analyses to test for their association with AVS. Through untargeted analysis of 190 urine and 130 plasma features that could be detected and quantified in the GC-MS spectra, we identified contrasting levels of 22 urine and 21 plasma features between AVS patients and control subjects. Following metabolite assignment, we observed significant changes in the concentration of known metabolites in urine (n = 14) and plasma (n = 15) that distinguish the metabolomic profiles of AVS patients from healthy controls. Associations with AVS were replicated in both plasma and urine for about half of these metabolites. Among these, 2-Oxovaleric acid, elaidic acid, myristic acid, palmitic acid, estrone, myo-inositol showed contrasting trends of regulation in the two biofluids. Only trans-Aconitic acid and 2,4-Di-tert-butylphenol showed consistent patterns of regulation in both plasma and urine. These results illustrate the power of metabolomics in identifying potential disease-associated biomarkers and provide a foundation for further studies towards early diagnostic applications in severe heart conditions that may prevent surgery in the elderly
    corecore