22 research outputs found

    Undiagnosed cardiovascular risk factors including elevated lipoprotein(a) in patients with ischaemic heart disease

    Get PDF
    ObjectivesThis study aims to investigate the prevalence of undiagnosed cardiovascular risk factors in patients with ischaemic heart disease (IHD).MethodsWe assessed the prevalence of previously undiagnosed cardiovascular risk factors, including elevated lipoprotein(a) [Lp(a)], among consenting patients with IHD who were admitted to hospital. Clinical information, including dietary history, from patients with newly diagnosed IHD and known IHD were compared.ResultsOf the 555 patients, 82.3% were males and 48.5% of Chinese ethnicity. Overall, 13.3% were newly diagnosed with hypertension, 14.8% with hypercholesterolemia, and 5% with type 2 diabetes (T2DM). Patients with newly diagnosed IHD, compared to those with known IHD, had a higher prevalence of new diagnoses of hypercholesterolemia (29.1% vs. 2.0%, p < 0.001), hypertension (24.5% vs. 3.4%, p < 0.001) and T2DM (7.3% vs. 3.1%, p = 0.023). Active smoking was prevalent in 28.3% of patients, and higher in newly diagnosed IHD (34.1% vs. 23.2%, p = 0.005). Elevated Lp(a) of ≥120 nmol/L was detected in 15.6% of all patients, none of whom were previously diagnosed. Dietary habits of >50% of patients in both groups did not meet national recommendations for fruits, vegetables, wholegrain and oily fish intake. However, patients with known IHD had a more regular omega-3 supplement intake (23.4% vs. 10.3%, p = 0.024).ConclusionIncreased detection efforts is necessary to diagnose chronic metabolic diseases (hypertension, hypercholesterolemia, T2DM) especially among patients at high risk for IHD. Cardiovascular risk factors, in particular elevated Lp(a), smoking, and suboptimal dietary intake in patients with IHD deserve further attention

    Asian Pacific Society of Cardiology Consensus Recommendations for Pre-participation Screening in Young Competitive Athletes

    Get PDF
    Sports-related sudden cardiac death is a rare but devastating consequence of sports participation. Certain pathologies underlying sports-related sudden cardiac death could have been picked up pre-participation and the affected athletes advised on appropriate preventive measures and/or suitability for training or competition. However, mass screening efforts – especially in healthy young populations – are fraught with challenges, most notably the need to balance scarce medical resources and sustainability of such screening programmes, in healthcare systems that are already stretched. Given the rising trend of young sports participants across the Asia-Pacific region, the working group of the Asian Pacific Society of Cardiology (APSC) developed a sports classification system that incorporates dynamic and static components of various sports, with deliberate integration of sports events unique to the Asia-Pacific region. The APSC expert panel reviewed and appraised using the Grading of Recommendations Assessment, Development, and Evaluation system. Consensus recommendations were developed, which were then put to an online vote. Consensus was reached when 80% of votes for a recommendation were agree or neutral. The resulting statements described here provide guidance on the need for cardiovascular pre-participation screening for young competitive athletes based on the intensity of sports they engage in

    Circadian Dependence of Infarct Size and Acute Heart Failure in ST Elevation Myocardial Infarction

    No full text
    <div><p>Objectives</p><p>There are conflicting data on the relationship between the time of symptom onset during the 24-hour cycle (circadian dependence) and infarct size in ST-elevation myocardial infarction (STEMI). Moreover, the impact of this circadian pattern of infarct size on clinical outcomes is unknown. We sought to study the circadian dependence of infarct size and its impact on clinical outcomes in STEMI.</p><p>Methods</p><p>We studied 6,710 consecutive patients hospitalized for STEMI from 2006 to 2009 in a tropical climate with non-varying day-night cycles. We categorized the time of symptom onset into four 6-hour intervals: midnight–6:00 A.M., 6:00 A.M.–noon, noon–6:00 P.M. and 6:00 P.M.–midnight. We used peak creatine kinase as a surrogate marker of infarct size.</p><p>Results</p><p>Midnight–6:00 A.M patients had the highest prevalence of diabetes mellitus (<i>P</i> = 0.03), more commonly presented with anterior MI (<i>P</i> = 0.03) and received percutaneous coronary intervention less frequently, as compared with other time intervals (<i>P</i> = 0.03). Adjusted mean peak creatine kinase was highest among midnight–6:00 A.M. patients and lowest among 6:00 A.M.–noon patients (2,590.8±2,839.1 IU/L and 2,336.3±2,386.6 IU/L, respectively, <i>P</i> = 0.04). Midnight–6:00 A.M patients were at greatest risk of acute heart failure (<i>P</i><0.001), 30-day mortality (<i>P</i> = 0.03) and 1-year mortality (<i>P</i> = 0.03), while the converse was observed in 6:00 A.M.–noon patients. After adjusting for diabetes, infarct location and performance of percutaneous coronary intervention, circadian variations in acute heart failure incidence remained strongly significant (<i>P</i> = 0.001).</p><p>Conclusion</p><p>We observed a circadian peak and nadir in infarct size during STEMI onset from midnight–6:00A.M and 6:00A.M.–noon respectively. The peak and nadir incidence of acute heart failure paralleled this circadian pattern. Differences in diabetes prevalence, infarct location and mechanical reperfusion may account partly for the observed circadian pattern of infarct size and acute heart failure.</p></div
    corecore