567 research outputs found

    Perfect separation of intraband and interband excitations in PdCoO2_2

    Full text link
    The temperature dependence of the optical properties of the delafossite PdCoO2_2 has been measured in the a-b planes over a wide frequency range. The optical conductivity due to the free-carrier (intraband) response falls well below the interband transitions, allowing the plasma frequency to be determined from the ff-sum rule. Drude-Lorentz fits to the complex optical conductivity yield estimates for the free-carrier plasma frequency and scattering rate. The in-plane plasma frequency has also been calculated using density functional theory. The experimentally-determined and calculated values for the plasma frequencies are all in good agreement; however, at low temperature the optically-determined scattering rate is much larger than the estimate for the transport scattering rate, indicating a strong frequency-dependent renormalization of the optical scattering rate. In addition to the expected in-plane infrared-active modes, two very strong features are observed that are attributed to the coupling of the in-plane carriers to the out-of-plane longitudinal optic modes.Comment: 7 pages with five figures and three tables; 4 pages of supplementary materia

    Electron-hole asymmetry in Co- and Mn-doped SrFe2As2

    Full text link
    Phase diagram of electron and hole-doped SrFe2As2 single crystals is investigated using Co and Mn substitution at the Fe-sites. We found that the spin-density-wave state is suppressed by both dopants, but the superconducting phase appears only for Co (electron)-doping, not for Mn (hole)-doping. Absence of the superconductivity by Mn-doping is in sharp contrast to the hole-doped system with K-substitution at the Sr sites. Distinct structural change, in particular the increase of the Fe-As distance by Mn-doping is important to have a magnetic and semiconducting ground state as confirmed by first principles calculations. The absence of electron-hole symmetry in the Fe-site-doped SrFe2As2 suggests that the occurrence of high-Tc superconductivity is sensitive to the structural modification rather than the charge doping.Comment: 7 pages, 6 figure

    Information and Particle Physics

    Full text link
    Information measures for relativistic quantum spinors are constructed to satisfy various postulated properties such as normalisation invariance and positivity. Those measures are then used to motivate generalised Lagrangians meant to probe shorter distance physics within the maximum uncertainty framework. The modified evolution equations that follow are necessarily nonlinear and simultaneously violate Lorentz invariance, supporting previous heuristic arguments linking quantum nonlinearity with Lorentz violation. The nonlinear equations also break discrete symmetries. We discuss the implications of our results for physics in the neutrino sector and cosmology

    Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient

    Get PDF
    We report on the anomalous Hall coefficient and longitudinal resistivity scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055). As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing temperature, we find n ~ 2 to be consistent with recent theories on the intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing temperatures far above the optimum, we note n > 3, similar behavior to certain inhomogeneous systems. This observation of atypical behavior agrees well with characteristic features attributable to spherical resonance from metallic inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure

    Visualization of defects in single-crystal and thin-film PdCoO2 using aberration-corrected scanning transmission electron microscopy

    Get PDF
    Funding: This work was primarily supported by the U.S. Department of Energy, Office of Basic Sciences, Division of Materials Sciences and Engineering, under Award No. DE-SC0002334.Single-crystal delafossite PdCoO2 is known to have an extremely low intrinsic impurity concentration of ~0.001%, demonstrating extraordinarily high conductivity with a mean free path of ~20 microns at low temperatures. However, when grown as thin films, the resistivity at room temperature increases by a factor of 3 to 80 times, depending on the film thickness. Using scanning transmission electron microscopy, we identify different classes of defects for the single crystal vs epitaxial thin film. The dominant defect for single-crystal PdCoO2 is found to be ribbon-like defects. For the thin films, we identify different types of defects arising in epitaxial thin films mainly due to substrate termination that disrupt the lateral connectivity of the conducting planes. Our results are consistent with the high conductivity of single crystals and increased electrical resistivity of the thin films compared to that of single crystals, suggesting that selecting a proper substrate, improving surface quality, and reducing the step density are the keys to enhance the film quality for utilizing PdCoO2 as a platform for future applications.PostprintPeer reviewe
    corecore