6 research outputs found

    Emergetic life cycle assesment of biomass system valorisation

    No full text
    Au regard de la croissance constante de la demande énergétique mondiale et de l'épuisement des ressources fossiles et des problèmes environnementaux, le recours à des sources d'énergie renouvelables est incontournable. La filière biomasse parait une voie prometteuse pour la production d’énergie propre et durable. La production du Gaz Naturel Synthétique (SNG) à partir de biomasse lignocellulosique est en plein essor. L’objectif de ce travail est la comparaison, par le biais d’indicateurs de développement durable, de systèmes de production de SNG à partir des résidus forestiers et des déchets des palmiers dattiers. L’Analyse de Cycle de Vie Emergétique a été choisie comme l’outil le plus judicieux pour cette étude. Elle permet de comparer les deux systèmes afin de déterminer lequel est le plus efficace et le plus durable, et de localiser leurs possibilités d’améliorations environnementales. Les résultats montrent que l'augmentation de la teneur en eau dans le gaz de synthèse peut éviter le dépôt de carbone au cours de la méthanation. Le rendement « Cold Gaz Efficiency » du procédé SNG est de 52%. Les résultats de l'évaluation environnementale montrent de fortes réductions des gaz à effet de serre pour chaque système. La transformité de SNG français est inférieure à celle du SNG tunisien. Par ailleurs, le système tunisien a la plus grande valeur du pourcentage de renouvelabilité et d'indice de durabilité. Le profil environnemental et la durabilité des deux systèmes étudiés peuvent être encore plus intéressants en installant l'unité de SNG à proximité d’oasis ou de forêts. Dans l'ensemble, le SNG devrait contribuer favorablement à l'avenir du mix d'énergie renouvelableActually biomass-based energy supply is a promising route for renewable energy system and sustainable development strategy. Methane rich gas from biomass can be obtained from gasification (Synthetic Natural Gas, SNG). SNG is very suitable, as it could be an important energy carrier. It could replace natural gas for electricity generation and heating systems and use the existing gas infrastructure. The main objective of this work is to investigate the syngas methanation, and to compare the environmental performance and sustainability for different SNG production systems. The French system (valorization of forest residue) and the Tunisian system (valorization of date palm waste) are analyzed and compared by using the Emergetic Life Cycle Assessment method. The inventory data are obtained mainly through process simulation by Aspen PlusTM software. The results show that increasing the steam ratio in syngas can avoid the carbon deposit during methanation process. The cold gas efficiency of the SNG process is 52%.The environmental analysis results show that high greenhouse gas savings can be obtained for each system. The transformity of the French SNG is lower than the one of the Tunisian SNG. On the other hand, the Tunisian system has the highest percentage of renewability and index of sustainability. The environmental performance and the sustainability of the two systems can be made even more attractive by installing the SNG production units near forests or oasis. Overall, the SNG is expected to contribute favorably to the future renewable energy syste

    Analyse de cycle de vie émergétique de système de valorisation de biomasse

    No full text
    Actually biomass-based energy supply is a promising route for renewable energy system and sustainable development strategy. Methane rich gas from biomass can be obtained from gasification (Synthetic Natural Gas, SNG). SNG is very suitable, as it could be an important energy carrier. It could replace natural gas for electricity generation and heating systems and use the existing gas infrastructure. The main objective of this work is to investigate the syngas methanation, and to compare the environmental performance and sustainability for different SNG production systems. The French system (valorization of forest residue) and the Tunisian system (valorization of date palm waste) are analyzed and compared by using the Emergetic Life Cycle Assessment method. The inventory data are obtained mainly through process simulation by Aspen PlusTM software. The results show that increasing the steam ratio in syngas can avoid the carbon deposit during methanation process. The cold gas efficiency of the SNG process is 52%.The environmental analysis results show that high greenhouse gas savings can be obtained for each system. The transformity of the French SNG is lower than the one of the Tunisian SNG. On the other hand, the Tunisian system has the highest percentage of renewability and index of sustainability. The environmental performance and the sustainability of the two systems can be made even more attractive by installing the SNG production units near forests or oasis. Overall, the SNG is expected to contribute favorably to the future renewable energy systemAu regard de la croissance constante de la demande énergétique mondiale et de l'épuisement des ressources fossiles et des problèmes environnementaux, le recours à des sources d'énergie renouvelables est incontournable. La filière biomasse parait une voie prometteuse pour la production d’énergie propre et durable. La production du Gaz Naturel Synthétique (SNG) à partir de biomasse lignocellulosique est en plein essor. L’objectif de ce travail est la comparaison, par le biais d’indicateurs de développement durable, de systèmes de production de SNG à partir des résidus forestiers et des déchets des palmiers dattiers. L’Analyse de Cycle de Vie Emergétique a été choisie comme l’outil le plus judicieux pour cette étude. Elle permet de comparer les deux systèmes afin de déterminer lequel est le plus efficace et le plus durable, et de localiser leurs possibilités d’améliorations environnementales. Les résultats montrent que l'augmentation de la teneur en eau dans le gaz de synthèse peut éviter le dépôt de carbone au cours de la méthanation. Le rendement « Cold Gaz Efficiency » du procédé SNG est de 52%. Les résultats de l'évaluation environnementale montrent de fortes réductions des gaz à effet de serre pour chaque système. La transformité de SNG français est inférieure à celle du SNG tunisien. Par ailleurs, le système tunisien a la plus grande valeur du pourcentage de renouvelabilité et d'indice de durabilité. Le profil environnemental et la durabilité des deux systèmes étudiés peuvent être encore plus intéressants en installant l'unité de SNG à proximité d’oasis ou de forêts. Dans l'ensemble, le SNG devrait contribuer favorablement à l'avenir du mix d'énergie renouvelabl

    Thermodynamic analysis of hydrogen production by steam and autothermal reforming of soybean waste frying oil

    No full text
    International audienceHydrogen production via steam and autothermal reforming of soybean waste frying oils (WFOs) is thermodynamically investigated via the Gibbs free energy minimization method. The thermodynamic optimum conditions are determined to maximize hydrogen production while minimizing the methane and carbon monoxide contents and coke formation. Equilibrium calculations are performed at atmospheric pressure over a wide range of temperatures (400-1200 degrees C), steam-to-WFO ratios (S/C: 1-15) and oxygen-to-WFO ratios (O/C: 0.0-2.0). The baseline case used for the study considers soybean WFO after 8 h of use (WFO8). The influence of frying time on the performance of reforming reactors is also discussed. The results show that the optimum conditions for steam reforming can be achieved at reforming temperatures between 650 degrees C and 850 degrees C and at a steam to carbon molar (S/C) ratio of approximately 5. The recommended operation conditions for the SR of WFO8 are proposed to be T = 650 degrees C and S/C ratio = 5. Under these conditions, a hydrogen yield of 169.83 mol/kg WFO8 can be obtained with a CO concentration in the SG of 3.91% and trace CH4 (0.03%), without the risk of coke formation. Hydrogen production from autothermal systems can be optimized at temperatures of 600-800 degrees C, S/C ratios of 3-5, and O/C ratios of 0.0-0.5. Under these conditions, thermoneutrality is obtained with O/C ratios of 0391-0.455. The recommended thermoneutral conditions are S/C = 5, T = 600 degrees C and O/C = 0.453. Under these conditions, 146.45 mol H-2/kg WFO8 can be produced with only 2.89% CO and 0.06% CH4 in the synthesis gas. The effect of frying time of soybean WFO on hydrogen productivity is shown to be negligible

    A comparative study on energetic and exergetic assessment of hydrogen production from bioethanol via steam reforming, partial oxidation and auto-thermal reforming processes

    No full text
    International audienceThree known types of ethanol reforming processes, ethanol steam reforming (ESR), partial oxidation (PDX) and auto-thermal reforming (ATR), are investigated. Favorable operating conditions are identified for each reaction system to maximize the production of hydrogen from bioethanol. Each process consists of three sections: the main reactor (ESR, PDX or AIR), the CO clean-up section comprised of the water gas shift reactor and preferential CO oxidation reactor and finally, the purification section. The performances of these processes are evaluated through mass, energy and exergy analyses. The material balances show that the total amount of ethanol required to generate 1 mol of hydrogen is 0.23 mol for the ATR, 0.24 mol for the PDX and 0.25 mol for the ESR. The ATR reforming process is shown to have the highest energetic efficiency, i.e., the lowest amount of energy is consumed to produce the same amount of hydrogen from ethanol. Moreover, the AIR process has the best exergetic performance, as it presents the highest ratio of exergy recovered in the hydrogen stream to the total exergy supplied to the system. For all three of the systems, the exergy destruction occurs mainly in the reformer due to the high irreversibility of the reaction

    Development of a fixed bed gasifier model and optimal operating conditions determination

    No full text
    International audienceThe main objective of this study was to develop a fixed bed gasifier model of palm waste and to identify the optimal operating conditions to produce electricity from synthesis gas. First, the gasifier was simulated using Aspen PlusTM software. Gasification is a thermo-chemical process that has long been used, but it remains a perfectible technology. It means incomplete combustion of biomass solid fuel into synthesis gas through partial oxidation. The operating parameters (temperature and equivalence ratio (ER)) were thereafter varied to investigate their effect on the synthesis gas composition and to provide guidance for future research and development efforts in process design. The equivalence ratio is defined as the ratio of the amount of air actually supplied to the gasifier and the stoichiometric amount of air. Increasing ER decreases the production of CO and H2 and increases the production of CO2 and H2O while an increase in temperature increases the fraction of CO and H2. The results show that the optimum temperature to have a syngas able to be effectively used for power generation is 900°C and the optimum equivalence ratio is 0.1
    corecore