10 research outputs found

    Usual intake of one-carbon metabolism nutrients in a young adult population aged 19–30 years: a cross-sectional study

    Get PDF
    One-carbon nutrients play an important role in epigenetic mechanisms and cellular methylation reactions. Inadequate intake of these nutrients is linked to metabolic perturbations, yet the current intake levels of these nutrients have rarely been studied in Asia. This cross-sectional study surveyed the usual dietary intake of one-carbon nutrients (folate, choline and vitamins B2, B6 and B12) among Thai university students aged 19–30 years (n 246). Socioeconomic background, health information, anthropometric data and 24-h dietary recall data were collected. The long-term usual intake was estimated using the multiple-source method. The average usual intake levels for men and women were (mean ± sd) 1⋅85 ± 0⋅95 and 2⋅42 ± 8⋅7 mg/d of vitamin B2, 1⋅96 ± 1⋅0 and 2⋅49 ± 8⋅7 mg/d of vitamin B6, 6⋅20 ± 9⋅5 and 6⋅28 ± 12 μg/d of vitamin B12, 195 ± 154 and 155 ± 101 μg dietary folate equivalent/d of folate, 418 ± 191 and 337 ± 164 mg/d of choline, respectively. Effect modification by sex was observed for vitamin B2 (P-interaction = 0⋅002) and choline (P-interaction = 0⋅02), where every 1 mg increase in vitamin B2 and 100 mg increase in choline intake were associated with a 2⋅07 (P = 0⋅01) and 0⋅81 kg/m2 (P = 0⋅04) lower BMI, respectively, in men. The study results suggest that Thai young adults meet the recommended levels for vitamins B2, B6 and B12. The majority of participants had inadequate folate intake and did not achieve recommended intake levels for choline. The study was approved by the Ethics Committee at the Faculty of Medicine, Chiang Mai University. This trial was registered at www.thaiclinicaltrials.gov (TCTR20210420007)

    Pretreatment and enzymatic hydrolysis optimization of lignocellulosic biomass for ethanol, xylitol, and phenylacetylcarbinol co-production using Candida magnoliae

    Get PDF
    Cellulosic bioethanol production generally has a higher operating cost due to relatively expensive pretreatment strategies and low efficiency of enzymatic hydrolysis. The production of other high-value chemicals such as xylitol and phenylacetylcarbinol (PAC) is, thus, necessary to offset the cost and promote economic viability. The optimal conditions of diluted sulfuric acid pretreatment under boiling water at 95°C and subsequent enzymatic hydrolysis steps for sugarcane bagasse (SCB), rice straw (RS), and corn cob (CC) were optimized using the response surface methodology via a central composite design to simplify the process on the large-scale production. The optimal pretreatment conditions (diluted sulfuric acid concentration (% w/v), treatment time (min)) for SCB (3.36, 113), RS (3.77, 109), and CC (3.89, 112) and the optimal enzymatic hydrolysis conditions (pretreated solid concentration (% w/v), hydrolysis time (h)) for SCB (12.1, 93), RS (10.9, 61), and CC (12.0, 90) were achieved. CC xylose-rich and CC glucose-rich hydrolysates obtained from the respective optimal condition of pretreatment and enzymatic hydrolysis steps were used for xylitol and ethanol production. The statistically significant highest (p ≤ 0.05) xylitol and ethanol yields were 65% ± 1% and 86% ± 2% using Candida magnoliae TISTR 5664. C. magnoliae could statistically significantly degrade (p ≤ 0.05) the inhibitors previously formed during the pretreatment step, including up to 97% w/w hydroxymethylfurfural, 76% w/w furfural, and completely degraded acetic acid during the xylitol production. This study was the first report using the mixed whole cells harvested from xylitol and ethanol production as a biocatalyst in PAC biotransformation under a two-phase emulsion system (vegetable oil/1 M phosphate (Pi) buffer). PAC concentration could be improved by 2-fold compared to a single-phase emulsion system using only 1 M Pi buffer

    Inhibitory Effects of Saponin-Rich Extracts from <i>Pouteria cambodiana</i> against Digestive Enzymes α-Glucosidase and Pancreatic Lipase

    No full text
    Pouteria cambodiana is a perennial plant that has a wide distribution in tropical regions. It is commonly referred to as ’Nom-nang’ in the northern region of Thailand. The bark of this plant has been used for the purpose of promoting lactation among breastfeeding mothers. Moreover, P. cambodiana bark has a high nutraceutical potential due to the presence of saponins, which are secondary metabolites. The purpose of this study was to determine the optimal conditions for ultrasound-assisted extraction (UAE) of saponins from the bark of P. cambodiana and to assess the in vitro inhibitory activities of saponin-rich extracts. The most effective extraction conditions involved a temperature of 50 °C and a 50% concentration level of ethanol as the solvent, which allowed the extraction of saponin at a concentration of 36.04 mg/g. Saponin-rich extracts and their hydrolysates from P. cambodiana bark were evaluated for their ability to inhibit α-glucosidase and pancreatic lipase. The IC50 values for saponin- and sapogenin-rich extracts inhibiting α-glucosidase were 0.10 and 2.98 mg/mL, respectively. Non-hydrolysed extracts also had a stronger inhibitory effect than acarbose. In the case of pancreatic lipase, only the hydrolysed extracts exhibited inhibitory effects on pancreatic lipase (IC 50 of 7.60 mg/mL). Thus, P. cambodiana bark may be an applicable natural resource for preparing ingredients for functional products with inhibitory activity against α-glucosidase and pancreatic lipase. The phenolic contents, saponin contents, and antioxidant activities of the dried extract stored at a low temperature of 25 °C for 2 months showed the best stability, with more than 90% retention.</p

    ใยอาหารที่มีสารต้านอนุมูลอิสระจากเปลือกถั่วและการประยุกต์ใช้ในผลิตภัณฑ์อาหาร

    No full text
    วารสารวิชาการและวิจัย มทร.พระนคร, 12(1) : 183-195Foods rich in dietary fiber and antioxidants have attracted great attention to both of consumers and food manufacturers because of their significant health benefits. Increased consumption of dietary fiber improves lowering blood pressure and cholesterol levels. Furthermore, it prevent a number of gastrointestinal disorders such as constipation and hemorrhoids. Antioxidants are bioactive compounds that can delay or inhibit the oxidation by inhibiting the initiation or propagation of oxidative chain reactions. These free radical reactions cause human diseases such as cardiovascular disease and cancer. Legumes are an excellent source of compounds having antioxidant. Hence, recent research has been focused on the potential utilization of bean coat which was by-products from processing industry to the development of new functional ingredients for food nutrition enrichment. The extraction of bioactive compounds from seed coats are used as a food ingredient for various foods processing such as tofu with soybean hull fiber, black bean seed coat in maize flours for the production of cookies and whole wheat bread. Therefore, research and development of new functional foods from bean seed coat used as ingredient for the preparation of food products to improve food nutrition will be necessary to provide for Industrial manufacturing according to demand and sufficient for healthy food consumption in the future.Rajamangala University of Technology Phra Nakho

    Optimization of Ultrasonic-Assisted Bioactive Compound Extraction from Green Soybean (<i>Glycine max</i> L.) and the Effect of Drying Methods and Storage Conditions on Procyanidin Extract

    No full text
    Green soybean (Glycine max L.) seeds (GSS) are rich in various antioxidants and phytonutrients that are linked to various health benefits. Ultrasound-assisted extraction (UAE) technology was used for extracting the effective components from GSS. A response surface method (RSM) was used to examine the influence of liquid-to-solid ratio and extraction temperature on the bioactive compounds and antioxidant characteristics. The optimal conditions were a liquid-to-solid ratio of 25:1 and a UAE temperature of 40 °C. The observed values coincided well with the predicted values under optimal conditions. Additionally, the effects of drying methods on the procyanidins and antioxidant activities of GSS extract were evaluated. The spray-dried GSS extract contained the highest levels of procyanidins (21.4 ± 0.37 mg PC/g), DPPH (199 ± 0.85 µM Trolox eq/g), and FRAP (243 ± 0.26 µM Trolox eq/g). Spray drying could be the most time- and energy-efficient technique for drying the GSS extract. The present study also assessed the effects of storage temperature and time on procyanidins and antioxidant activities in GSS extract powder. Procyanidins were found to degrade more rapidly at 45 °C than at 25 °C and 35 °C. Storage under 25 °C was appropriate for maintaining the procyanidin contents, DPPH, and FRAP activities in the GSS extract powder. This study contributed to the body of knowledge by explaining the preparation of procyanidin extract powder from GSS, which might be employed as a low-cost supply of nutraceutical compounds for the functional food industry and pharmaceutical sector

    Ultrasonic Extraction of Bioactive Compounds from Green Soybean Pods and Application in Green Soybean Milk Antioxidants Fortification

    No full text
    Green soybean (Glycine max L.) pods (GSP) are agro-industrial waste from the production of frozen green soybean and milk. These pods contain natural antioxidants and various bioactive compounds that are still underutilized. Polyphenols and flavonoids in GSP were extracted by ultrasound technique and used in the antioxidant fortification of green soybean milk. The ultrasound extraction that yielded the highest total polyphenol content and antioxidant activities was 50% amplitude for 10 min. Response surface methodology was applied to analyze an optimum ultrasonic-assisted extraction (UAE) condition of these variables. The highest desirability was found to be 50% amplitude with an extraction time of 10.5 min. Under these conditions, the experimental total phenolic content, total flavonoid content, and antioxidant activity were well matched with the predicted values (R2 &gt; 0.70). Fortification of the GSP extracts (1&ndash;3% v/v) in green soybean milk resulted in higher levels of bioactive compounds and antioxidant activity in a dose-dependent manner. Procyanidins were found to be the main polyphenols in dried GSP crude extracts, which were present at a concentration of 0.72 &plusmn; 0.01 mg/100 g. The addition of GSP extracts obtained by using an ultrasound technique to green soybean milk increased its bioactive compound content, especially procyanidins, as well as its antioxidant activity

    Production of Phenylacetylcarbinol via Biotransformation Using the Co-Culture of <i>Candida tropicalis</i> TISTR 5306 and <i>Saccharomyces cerevisiae</i> TISTR 5606 as the Biocatalyst

    No full text
    Phenylacetylcarbinol (PAC) is a precursor for the synthesis of several pharmaceuticals, including ephedrine, pseudoephedrine, and norephedrine. PAC is commonly produced through biotransformation using microbial pyruvate decarboxylase (PDC) in the form of frozen–thawed whole cells. However, the lack of microorganisms capable of high PDC activity is the main factor in the production of PAC. In addition, researchers are also looking for ways to utilize agro-industrial residues as an inexpensive carbon source through an integrated biorefinery approach in which sugars can be utilized for bioethanol production and frozen–thawed whole cells for PAC synthesis. In the present study, Candida tropicalis, Saccharomyces cerevisiae, and the co-culture of both strains were compared for their biomass and ethanol concentrations, as well as for their volumetric and specific PDC activities when cultivated in a sugarcane bagasse (SCB) hydrolysate medium (SCBHM). The co-culture that resulted in a higher level of PAC (8.65 ± 0.08 mM) with 26.4 ± 0.9 g L−1 ethanol production was chosen for further experiments. Biomass production was scaled up to 100 L and the kinetic parameters were studied. The biomass harvested from the bioreactor was utilized as frozen–thawed whole cells for the selection of an initial pyruvate (Pyr)-to-benzaldehyde (Bz) concentration ([Pyr]/[Bz]) ratio suitable for the PAC biotransformation in a single-phase emulsion system. The initial [Pyr]/[Bz] at 100/120 mM resulted in higher PAC levels with 10.5 ± 0.2 mM when compared to 200/240 mM (8.60 ± 0.01 mM). A subsequent two-phase emulsion system with Pyr in the aqueous phase, Bz in the organic phase, and frozen–thawed whole cells of the co-culture as the biocatalyst produced a 1.46-fold higher PAC level when compared to a single-phase emulsion system. In addition, the cost analysis strategy indicated preliminary costs of USD 0.82 and 1.01/kg PAC for the single-phase and two-phase emulsion systems, respectively. The results of the present study suggested that the co-culture of C. tropicalis and S. cerevisiae can effectively produce bioethanol and PAC from SCB and would decrease the overall production cost on an industrial scale utilizing the two-phase emulsion system with the proposed multiple-pass strategy

    Cell Recycling Application in Single-Stage and Sequential-Stage Co-Production of Xylitol and Ethanol Using Corn Cob Hydrolysates

    No full text
    A sustainable bioeconomy in agricultural and agro-industrial production must inevitably involve the sustainable use of agricultural residues through zero-waste processes. Corn cob is considered crucial agricultural waste as 278 and 293 million tons were produced worldwide in 2022 and 2023, respectively. Corn cob hydrolysates, which are abundant in xylose and glucose, could be efficiently utilized for xylitol and ethanol production through the cultivation of recycling the yeast strain Candida magnoliae TISTR 5664 in the single-stage and sequential-stage co-production of these products. The statistically significant maxima (p ≤ 0.05) ethanol concentrations were improved by 7.8% (49.9–51.7 g/L or 91.3–95.6% of the theoretical) from the single stage of ethanol production employing recycled cells and 9.9% (50.9–54.1 g/L or 77.3–83.9% of the theoretical) from the second step of sequential-stage co-production using recycled cells without xylitol accumulation. Conversely, the single-stage xylitol production utilizing recycled cells under microaerobic conditions resulted in a statistically significant lower (p ≤ 0.05) xylitol concentration by two folds relative to the control, while ethanol concentration was elevated by almost double. The statistically significant maximum (p ≤ 0.05) xylitol was achieved at 25.9 g/L (58.6% of the theoretical) when sequential-stage co-production was initiated in the first step with fresh inoculum only and not recycled cells. The sequential-stage co-production of xylitol and ethanol presented the potential for statistically significant improvement (p ≤ 0.05) of both xylitol and ethanol production processes
    corecore