20 research outputs found

    Phenotypic and genetic characterization of date palm cultivars resistant to bayoud disease

    Get PDF
    Taqerbucht cultivars of date palm are well known by their natural resistance against devastating fungus Bayoud disease. In order to know, if these accessions have the same genetic and morphological profile or each of them constitutes a separate cultivar, we carried out a morphological and molecular characterization and we compared four Taqerbucht (Tq.) date palm cultivars from the southwestern region of Algeria: Tq.hamra cultivar (red fruits), Tq. safra cultivar (yellow fruits), Tq.beïda (white fruits) and Tq.kahla cultivar (black fruits). Seventy one phenotypic characteristics, including 33 quantitative and 38 qualitative traits, have been selected for comparison. Principal component analysis (PCA) and multi-component clustering were used to analyze and compare the data. The results suggest that the four cultivars can be classified into distinct groups. One group contains one cultivar, the Tq.kahla and another group contains the three other cultivars (Tq.safra, Tq.beïda and Tq. hamra). Based on phylogenetic analyses and sequence comparisons, the cultivar Tq. kahla seems to be divergent from the cultivar Tq.hamra, whereas the two cultivars Tq.Safra and Tq.beïda are close to each other. Using 16 Simple Sequence Repeat (SSR) genetic markers to analyze genetic diversity among the cultivars, we found that 13 markers were detectable in 31 allele's loci, and the number of alleles per locus varied from 1–4 with an average of 2.38 alleles per locus. Expected heterozygosity (He) values ranged from 0.375–0.500 and observed heterozygosity (Ho) values from 0.750–1.000

    Effect of thermo-activation on mechanical strengths and chlorides permeability in pozzolanic materials

    No full text
    The present research aimed to study the combined effects of natural pozzolana and curing on the compressive and flexural strengths of mortars; it also investigated the chloride permeability of concrete. To do that, Ordinary Portland cement (CEMI) was used and three concrete preparations were made by incorporating natural pozzolana at a rate of 10, 20 and 30% by weight of CEMI. Moreover, three curing methods were employed. The first one is a standard curing method, at temperature 20 °C, and 2 other thermo-activation methods at the temperatures of 40 °C and 70 °C, for a setting time of 4 h. The thermo-activation methods were used to accelerate the initial hydration, for the purpose of improving the strength of the prepared mortars and concretes at the early age. The results obtained indicate that, substituting natural pozzolana for CEMI with a level below 20% gives strengths comparable to those obtained with CEMI alone. The curing methods at 40 °C and 70 °C allowed increasing mortar and concrete strengths at the early age; however, it was found that the temperature of 70 °C reduces strengths, at later age. Natural pozzolana limits the penetration of chlorides. Keywords: CEMI, Pozzolana, Hydration, Strength, Temperature, Chloride

    Effect of mineral admixture on resistance to sulphuric and hydrochloric acid attacks in selfcompacting concrete

    No full text
    International audienceThis paper presents a detailed experimental investigation of the acid resistance of economical self-compacting concrete (SCC) prepared with natural pozzolan, immersed for up to 12 weeks in sulphuric acid (H2SO4) and hydrochloric acid (HCl) solutions. The results are compared with those from a control concrete and other SCCs prepared with fly ash and limestone filler. The different factors considered in this study were the effect of mineral admixture type and the strength classes (30, 50, and 70 MPa) of the concrete specimens. In total, 12 formulations were tested. Mass and compressive strength losses are the main properties investigated. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were used to better understand the kinetics of deterioration of each type of concrete. The results show the positive influence of natural pozzolan on the behaviour of SCC under both sulphuric and hydrochloric acid mediums

    Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar

    No full text
    International audienceBased on an ongoing experimental programme, this research focuses on the effect of various supplementary cementitious materials (SCMs) (natural pozzolan (NP)/silica fume (SF)/limestone fine (LF) at various substitution levels) on the microstructure and mechano-chemical resistance of blended mortar. The paper primarily considers the characteristics of these materials, including their strength and the effects of aggressive chemical environments, by using sulphuric acid and nitric acid. The porosity and pore size distribution of the mortars are also examined using mercury intrusion porosimetry (MIP).The microstructural changes in pastes caused by SCMs and the acid attack of the solution are analysed and related to the phase composition found by X-ray diffraction (XRD). Microstructural investigations, such as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), were also used to support the explanation for these mechanisms.The results, according to ASTM C267, showed that the addition of natural pozzolan or limestone fine would improve the acid resistance of mortar, but at different rates depending on the proportion of SCMs. On the other hand, mortars with silica fume are severely damaged in the sulphuric acid environment

    Influence du type d’addition minérale sur les propriétés de transfert des Bétons AutoPlaçants

    No full text
    La formulation des bétons autoplaçants (BAP) présente certaines spécificités dont un volume élevé de pâte et une quantité importante d’ajouts minéraux. Ces deux paramètres influencent sensiblement les propriétés de transfert de ces bétons. Dans ce travail, nous avons étudié l’influence de la nature et du pourcentage de plusieurs additions minérales sur certaines propriétés de transfert (la diffusion des ions chlore et la perméabilité au gaz) des BAP. Trois différentes additions minérales ont été testées : des fillers calcaires, de la pouzzolane naturelle et des cendres volantes. Ensuite, nous avons cherché une probable relation analytique entre ces propriétés et la résistance à la compression de ces bétons. Au total, douze formulations ont été étudiées, elles couvrent trois différentes classes de résistances (30 MPa, 50 MPa et 70 MPa) et quatre types de bétons: un béton ordinaire vibré, un BAP à base de pouzzolanes naturelles, un BAP à base de fillers calcaires et un BAP à base de cendres volantes. Les résultats montrent que la nature de l’addition minérale dans les BAP influe considérablement sur les propriétés de transferts de ces bétons. Après 28, 90 et 360 jours de cure, les BAP contenant de la pouzzolane naturelle représentent des performances très comparables à celles obtenues sur des BAP à base de cendres volantes et bien meilleures que celles obtenues sur des BAP formulés avec du filler calcaire. Indépendamment du type d’addition minérale, les résultats confirment l’existence d’une forte corrélation entre le développement de la résistance à la compression et les propriétés de transferts des BAP

    Influence of Mineral Admixtures on the Permeation Properties of Self-Compacting Concrete at Different Ages

    No full text
    International audienceDue to its specific properties, the study of self-compacting concrete (SCC) represents an area of research that has strong potential for development. However, in spite of the interest of researchers in this new material, SCC has not yet gained universal acceptance as a construction material, and its application remains limited. The development of an economical SCC with interesting properties in the fresh and hardened state is important for the acceptance of such a concrete. Algerian natural source Pozzolan is rarely used in SCC due to the absence of any thorough study of its properties. This study investigates the permeation properties of SCC mixtures made with this Algerian natural Pozzolan, compared with conventional vibrated concrete and other SCC mixtures containing fly ash or limestone filler. Additionally, the correlations between chloride diffusion and sorptivity, and between apparent gas permeability and chloride diffusion, were investigated. Results indicate that, despite its economic benefits, SCC incorporating natural Pozzolan presents very low permeation properties (for example: lower migration coefficients compared to the SCC mixtures with limestone filler or ordinary vibrated concrete (difference > 50 % for results of the 30 MPa strength class). The relation between chloride diffusion and sorptivity, and between apparent gas permeability and chloride diffusion, is also confirmed

    Influence Of Natural Pozzolan On The Behavior Of Self-Compacting Concrete Under Sulphuric And Hydrochloric Acid Attacks, Comparative Study

    No full text
    International audienceAcidic attack is a topic of increasing significance, owing to the spread of damage to concrete structures in both urban and industrial areas. Mineral addition type is an important factor affecting performance of Self-Compacting Concrete (SCC) in an aggressive environment. Pozzolan from natural sources in Algeria is rarely used in SCC due to the absence of a thorough study of its properties. The goal of this study was to compare the hydrochloric and sulphuric acid behaviors of a SCC-containing Algerian natural pozzolan with SCC-containing fly ash and limestone filler additions. For this purpose, twelve formulations were prepared with three different strength classes (30, 50, and 70 MPa). After 28 days of curing, the samples were immersed in hydrochloric sulfuric acid solutions for a period of 12 weeks. The changes in mass loss and compressive strength loss for each acid solution within the test period were recorded. The Scanning Electron Microscope (SEM) and XRD analysis were used to better understand the mechanism of deterioration of each type of concrete. In spite of their economical properties, the results confirm that the use of Algerian natural pozzolan contributes to the improvement of resistance of SCC under sulphuric and hydrochloric acid attack

    Behavior of limestone filler cement mortars exposed to magnesium sulfate attack

    No full text
    WOS:000342367500042International audienceIn the cement production industry, looking for a less expensive binder using industrial waste and natural resources has become a major concern for the deficit level in the manufacture of Portland cement. However, despite the technical, economic and environmental benefits brought by the use of blended cements, they are associated with disadvantages. The objective of this paper is to study the effects of the incorporation of limestone fillers on the mechanical properties and durability of mortars prepared in different combinations based on this admixture material. The durability was evaluated after immersing the specimens in a 5% solution of magnesium sulfate for periods up to 360 days, and the penetration of chloride ions. The test results demonstrated that mortar and paste samples incorporating higher replacement levels of limestone filler were more susceptible to sulfate attack. According to microstructural analysis, such as DRX, the deterioration was significantly associated with formation of thaumasite, gypsum, and the brucite in the deteriorated parts of the specimens

    Influence du type d’addition minérale sur les propriétés de transfert des Bétons AutoPlaçants Influence of the type of mineral admixtures on the transport properties of self compacting concrete

    No full text
    La formulation des bétons autoplaçants (BAP) présente certaines spécificités dont un volume élevé de pâte et une quantité importante d’ajouts minéraux. Ces deux paramètres influencent sensiblement les propriétés de transfert de ces bétons. Dans ce travail, nous avons étudié l’influence de la nature et du pourcentage de plusieurs additions minérales sur certaines propriétés de transfert (la diffusion des ions chlore et la perméabilité au gaz) des BAP. Trois différentes additions minérales ont été testées : des fillers calcaires, de la pouzzolane naturelle et des cendres volantes. Ensuite, nous avons cherché une probable relation analytique entre ces propriétés et la résistance à la compression de ces bétons. Au total, douze formulations ont été étudiées, elles couvrent trois différentes classes de résistances (30 MPa, 50 MPa et 70 MPa) et quatre types de bétons: un béton ordinaire vibré, un BAP à base de pouzzolanes naturelles, un BAP à base de fillers calcaires et un BAP à base de cendres volantes. Les résultats montrent que la nature de l’addition minérale dans les BAP influe considérablement sur les propriétés de transferts de ces bétons. Après 28, 90 et 360 jours de cure, les BAP contenant de la pouzzolane naturelle représentent des performances très comparables à celles obtenues sur des BAP à base de cendres volantes et bien meilleures que celles obtenues sur des BAP formulés avec du filler calcaire. Indépendamment du type d’addition minérale, les résultats confirment l’existence d’une forte corrélation entre le développement de la résistance à la compression et les propriétés de transferts des BAP. Formulation of self compacting concrete (SCC) has some specific characteristics including a high volume of paste and a large amount of mineral admixtures. These two parameters influence significantly the transport properties of SCC. In this work, we studied the influence of nature and the percentage of several mineral admixtures on some transport properties (the ions diffusion and chloride gas permeability) of the SCC. Three different mineral additives were tested: the limestone fillers, the natural pozzolan and the fly ash. Then we looked for the analytical relationship between these properties and the compressive strength of concrete. A total of twelve formulations were studied, they cover three different compressive strength classes (30 MPa, 50 MPa and 70 MPa) and four types of concrete: ordinary vibrated concrete, a SCC containing natural pozzolan, a SCC based with limestone fillers and SCC containing fly ash. The results show that the nature of the mineral admixtures in SCC influence on the transport properties of these concretes. After 28, 90 and 360 days of curing, the SCC containing natural pozzolan represent very similar performance to those obtained on SCC containing fly ash and much better than those obtained on SCC formulated with limestone filler. Regardless of the type of mineral admixtures, the results confirm the existence of a strong correlation between development of compressive strength and transport properties of SCC
    corecore