222 research outputs found

    Bank Loan Agreement and CEO Compensation

    Get PDF
    Contrary to other forms of outside financing, the announcement of a bank loan agreement prompts a positive and significant market return. Throughout the literature, bank loans are deemed special and unique due to multiple benefits accruing to bank borrowers. The short-term positive market reaction is however inconsistent with the long-term underperformance of borrowing firms (Billet et al., 2006). We find that unlike shareholders, CEOs gain from the bank loan relation over the long-term. Specifically, we find that bank loan agreement elicits a significant increase in total compensation through an increase in non-performance based compensation components such as salary, bonus and other compensation. We also report a smaller proportion of performance based compensation following the bank agreement. Generally, the results suggest that subsequent to a major bank loan, CEOs seem to gain enough influence to shield their compensation from the firm \u27s underperformance. In particular this evidence supports the uniqueness of bank loan relations

    Support for the Inclusion of Personal Value Preferences in Decision Support Systems

    Get PDF
    We consider the important issue of including personal value preferences in decision support systems (DSS). Various personal differences have been shown to affect the acceptance, use, and effectiveness of DSS. Decision-making models offer a theoretical basis for the inclusion of various personal differences (including personal value preferences) in decision-making. Research in the field of psychology has long recognized the importance of values in both motivation and choice behavior. Other research has also found personal values to be relevant in decision-making. We posit that since personal values are important in the decision-making process, they should also be important in the support of decision-making and thus in decision support systems

    All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope

    Full text link
    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th^{\textrm{th}}, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the ANTARES neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ±500\pm500 s around the GW event time nor any time clustering of events over an extended time window of ±3\pm3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than ∌4×1054\sim4\times 10^{54} erg for a E−2E^{-2} spectrum

    The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)

    Get PDF
    Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part III: Searches for dark matter and exotics, neutrino oscillations and detector calibration

    Get PDF
    Papers on the searches for dark matter and exotics, neutrino oscillations and detector calibration, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program

    Get PDF
    Papers on the ANTARES multi-messenger program, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio

    New Method to Calculate the Sign and Relative Strength of Magnetic Interactions in Low-Dimensional Systems on the Basis of Structural Data

    Full text link
    The connection of strength of magnetic interactions and type ordering the magnetic moments with crystal chemical characteristics in low-dimensional magnets is investigated. The new method to calculate the sign and relative strength of magnetic interactions in low-dimensional systems on the basis of the structural data is proposed. This method allows to estimate magnetic interactions not only inside low-dimensional fragments but also between them, and also to predict the possibility of the occurrence of magnetic phase transitions and anomalies of the magnetic interactions. Moreover, it can be used for search of low-dimensional magnets among the compounds whose crystal structures are known. The possibilities of the method are illustrated in an example of research of magnetic interactions in familiar low-dimensional magnets SrCu2(BO3)2, CaCuGe2O6, CaV4O9, Cu2Te2O5Cl2, Cu2Te2O5Br2, BaCu2Si2O7, BaCu2Ge2O7, BaCuSi2O6, LiCu2O2, and NaCu2O2.Comment: 18 pages, 8 figures, 2 tables, published versio

    EMMPRIN Promotes Melanoma Cells Malignant Properties through a HIF-2alpha Mediated Up-Regulation of VEGF-Receptor-2

    Get PDF
    EMMPRIN's expression in melanoma tissue was reported to be predictive of poor prognosis. Here we demonstrate that EMMPRIN up-regulated VEGF receptor-2 (VEGFR-2) in two different primary melanoma cell lines and consequently increased migration and proliferation of these cells while inhibiting their apoptosis. SiRNA inhibition of VEGFR-2 expression abrogated these EMMPRIN effects. EMMPRIN regulation of VEGFR-2 was mediated through the over-expression of HIF-2α and its translocation to the nucleus where it forms heterodimers with HIF-1ÎČ. These results were supported by an in vivo correlation between the expression of EMMPRIN with that of VEGFR-2 in human melanoma tissues as well as with the extent of HIF-2α localization in the nucleus. They demonstrate a novel mechanism by which EMMPRIN promotes tumor progression through HIF-2α/VEGFR-2 mediated mechanism, with an autocrine role in melanoma cell malignancy. The inhibition of EMMPRIN in cancer may thus simultaneously target both the VEGFR-2/VEGF system and the matrix degrading proteases to block tumor cell growth and invasion

    Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube

    Get PDF
    Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes
    • 

    corecore