8 research outputs found

    Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments

    Get PDF
    The design of new dual-function inhibitors simultaneously preventing hydrate formation and corrosion is a relevant issue for the oil and gas industry. The structure-property relationship for a promising class of hybrid inhibitors based on waterborne polyurethanes (WPU) was studied in this work. Variation of diethanolamines differing in the size and branching of N-substituents (methyl, n-butyl, and tert-butyl), as well as the amount of these groups, allowed the structure of polymer molecules to be preset during their synthesis. To assess the hydrate and corrosion inhibition efficiency of developed reagents pressurized rocking cells, electrochemistry and weight-loss techniques were used. A distinct effect of these variables altering the hydrophobicity of obtained compounds on their target properties was revealed. Polymers with increased content of diethanolamine fragments with n- or tert-butyl as N-substituent (WPU-6 and WPU-7, respectively) worked as dual-function inhibitors, showing nearly the same efficiency as commercial ones at low concentration (0.25 wt%), with the branched one (tert-butyl; WPU-7) turning out to be more effective as a corrosion inhibitor. Commercial kinetic hydrate inhibitor Luvicap 55 W and corrosion inhibitor Armohib CI-28 were taken as reference samples. Preliminary study reveals that WPU-6 and WPU-7 polyurethanes as well as Luvicap 55 W are all poorly biodegradable compounds; BODt/CODcr (ratio of Biochemical oxygen demand and Chemical oxygen demand) value is 0.234 and 0.294 for WPU-6 and WPU-7, respectively, compared to 0.251 for commercial kinetic hydrate inhibitor Luvicap 55 W. Since the obtained polyurethanes have a bifunctional effect and operate at low enough concentrations, their employment is expected to reduce both operating costs and environmental impact.publishedVersio

    Electrochemical Synthesis of Zirconium Pre-Catalysts for Homogeneous Ethylene Oligomerization

    No full text
    The catalytic activity of electrochemically synthesized zirconium carboxylates was studied in the process of ethylene oligomerization. Zirconium carboxylates were electrochemically synthesized directly from metallic zirconium and corresponding carboxylic acids (acetic, octanoic and lauric). A comprehensive study (element analysis, nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, powder X-ray diffraction (PXRD)) of the synthesized zirconium carboxylates showed that these species contain bidentate carboxylate moieties. It was shown that obtained zirconium carboxylates, in combination with Et3Al2Cl3 (Al/Zr = 20), have a moderate activity of (7.6–9.9) × 103 molC2H4⋅molZr−1⋅h−1 in terms of ethylene oligomerization (at T = 80 °C, p = 20 bar), leading to even-numbered C4–C10 linear alpha-olefins

    Hydrolysis of Element (White) Phosphorus under the Action of Heterometallic Cubane-Type Cluster {Mo3PdS4}

    No full text
    Reaction of heterometallic cubane-type cluster complexes—[Mo3{Pd(dba)}S4Cl3(dbbpy)3]PF6, [Mo3{Pd(tu)}S4Cl3(dbbpy)3]Cl and [Mo3{Pd(dba)}S4(acac)3(py)3]PF6, where dba—dibenzylideneacetone, dbbpy—4,4′-di-tert-butyl-2,2′-bipyridine, tu—thiourea, acac—acetylacetonate, py—pyridine, with white phosphorus (P4) in the presence of water leads to the formation of phosphorous acid H3PO3 as the major product. The crucial role of the Pd atom in the cluster core {Mo3PdS4} has been established in the hydrolytic activation of P4 molecule. The main intermediate of the process, the cluster complex [Mo3{PdP(OH)3}S4Cl3(dbbpy)3]+ with coordinated P(OH)3 molecule and phosphine PH3, have been detected by 31P NMR spectroscopy in the reaction mixture

    Hydrolysis of Element (White) Phosphorus under the Action of Heterometallic Cubane-Type Cluster {Mo<sub>3</sub>PdS<sub>4</sub>}

    No full text
    Reaction of heterometallic cubane-type cluster complexes—[Mo3{Pd(dba)}S4Cl3(dbbpy)3]PF6, [Mo3{Pd(tu)}S4Cl3(dbbpy)3]Cl and [Mo3{Pd(dba)}S4(acac)3(py)3]PF6, where dba—dibenzylideneacetone, dbbpy—4,4′-di-tert-butyl-2,2′-bipyridine, tu—thiourea, acac—acetylacetonate, py—pyridine, with white phosphorus (P4) in the presence of water leads to the formation of phosphorous acid H3PO3 as the major product. The crucial role of the Pd atom in the cluster core {Mo3PdS4} has been established in the hydrolytic activation of P4 molecule. The main intermediate of the process, the cluster complex [Mo3{PdP(OH)3}S4Cl3(dbbpy)3]+ with coordinated P(OH)3 molecule and phosphine PH3, have been detected by 31P NMR spectroscopy in the reaction mixture

    Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments

    No full text
    The design of new dual-function inhibitors simultaneously preventing hydrate formation and corrosion is a relevant issue for the oil and gas industry. The structure-property relationship for a promising class of hybrid inhibitors based on waterborne polyurethanes (WPU) was studied in this work. Variation of diethanolamines differing in the size and branching of N-substituents (methyl, n-butyl, and tert-butyl), as well as the amount of these groups, allowed the structure of polymer molecules to be preset during their synthesis. To assess the hydrate and corrosion inhibition efficiency of developed reagents pressurized rocking cells, electrochemistry and weight-loss techniques were used. A distinct effect of these variables altering the hydrophobicity of obtained compounds on their target properties was revealed. Polymers with increased content of diethanolamine fragments with n- or tert-butyl as N-substituent (WPU-6 and WPU-7, respectively) worked as dual-function inhibitors, showing nearly the same efficiency as commercial ones at low concentration (0.25 wt%), with the branched one (tert-butyl; WPU-7) turning out to be more effective as a corrosion inhibitor. Commercial kinetic hydrate inhibitor Luvicap 55 W and corrosion inhibitor Armohib CI-28 were taken as reference samples. Preliminary study reveals that WPU-6 and WPU-7 polyurethanes as well as Luvicap 55 W are all poorly biodegradable compounds; BODt/CODcr (ratio of Biochemical oxygen demand and Chemical oxygen demand) value is 0.234 and 0.294 for WPU-6 and WPU-7, respectively, compared to 0.251 for commercial kinetic hydrate inhibitor Luvicap 55 W. Since the obtained polyurethanes have a bifunctional effect and operate at low enough concentrations, their employment is expected to reduce both operating costs and environmental impact
    corecore