8 research outputs found

    Tailoring the pressure-drop in multi-layered open-cell porous inconel structures

    Get PDF
    This study investigates the pressure-drop behaviour associated with airflow through bulk and structurally tailored multi-layered, open-cell porous Inconel structures over a wide airflow velocity range (0–50 m s-1). The effect of airflow velocity on the pressure-drop behaviour as a function of the sample thickness is presented and related to the flow behaviour corresponding to the relevant flow regimes (Darcy, Forchheimer, Turbulent and Postturbulent). Entrance effects are highlighted as a source of the pressure-drop increase for porous structures with air gaps, regardless of their sizes, as long as they are larger than those generated by loosely-stacked structures. The pressure-drops for gapped porous structures and the mathematical-summation of the pressure drop for the corresponding individual components, were in very good agreement, at lower airflow velocities. The potential for mass-efficient porous structures, providing a high pressure drop, was demonstrated using multiple thin porous laminates separated by air gaps

    Experimental investigation of pressure-drop characteristics across multi-layer porous metal structures

    Get PDF
    This study investigates the effect of airflow (in the range of 0–70 m s-1) on the pressure-drop characteristics for a novel multi-layered, nickel-based porous metal, as a function of thickness (affected by sectioning) and density (affected by compression). In addition to generating unique data for these materials, the study highlights the need for precise pinpointing of the different flow regimes (Darcy, Forchheimer and Turbulent) in order to enable accurate determination of the permeability (K) and form drag coefficient (C) defined by the Forchheimer equation and to understand the complex dependence of length-normalised pressure drop on sample thickness

    Design, imaging and performance of 3D printed open-cell architectures for porous electrodes: quantification of surface area and permeability

    No full text
    Background: the development of new open-cell porous electrodes for electrochemical flow cells and reactors is demonstrated through the application of 3D printing. The properties of diverse architectures were investigated, including rectangular, circular, hexagonal and triangular cells with linear porosity grades of 10, 20 and 30 pores per inch. Specimens were digitally designed, then 3D printed in stainless steel via selective laser melting. After being examined using scanning electron microscopy, they were characterised in terms of volumetric surface area and porosity with the aid of X-ray computed tomography. Pressure drop measurements were performed over a range of mean linear velocity and Reynolds number, allowing the estimation of Darcy’s friction factor and permeability. Results: volumetric surface area estimated from tomography scans was up to 36% higher than the nominal values due to surface roughness and post-processing algorithms. In contrast, volumetric porosity obtained by tomography agreed fully with measured values. Triangular architectures afforded additional surface area both digitally and according to tomography. The largest pressure drop was found in circular materials, the triangular ones showing the lowest. The 20 ppi triangular architecture had a volumetric surface area of approximately 44.5 cm-1 and a permeability of 2.31 × 10-5 cm2. Conclusion: triangular architectures were preferred due to their favourable combination of high surface area and high permeability with low mass and reduced digital complexity. This provides a strategy to initiate the optimization of 3D printed porous electrodes for electrochemical flow cells and reactors in novel and niche applications
    corecore