14 research outputs found

    Graph-Based Conversation Analysis in Social Media

    Get PDF
    Social media platforms offer their audience the possibility to reply to posts through comments and reactions. This allows social media users to express their ideas and opinions on shared content, thus opening virtual discussions. Most studies on social networks have focused only on user relationships or on the shared content, while ignoring the valuable information hidden in the digital conversations, in terms of structure of the discussion and relation between contents, which is essential for understanding online communication behavior. This work proposes a graph-based framework to assess the shape and structure of online conversations. The analysis was composed of two main stages: intent analysis and network generation. Users' intention was detected using keyword-based classification, followed by the implementation of machine learning-based classification algorithms for uncategorized comments. Afterwards, human-in-the-loop was involved in improving the keyword-based classification. To extract essential information on social media communication patterns among the users, we built conversation graphs using a directed multigraph network and we show our model at work in two real-life experiments. The first experiment used data from a real social media challenge and it was able to categorize 90% of comments with 98% accuracy. The second experiment focused on COVID vaccine-related discussions in online forums and investigated the stance and sentiment to understand how the comments are affected by their parent discussion. Finally, the most popular online discussion patterns were mined and interpreted. We see that the dynamics obtained from conversation graphs are similar to traditional communication activities

    Effect of Cooling Conditions, Retrofitting on Strength of Concrete Subjected to Elevated Temperature

    Get PDF
    Concrete has a high degree of fire resistance at moderate temperatures. High temperatures, however, cause concrete to lose its stiffness and strength. The effects of cooling techniques and retrofitting on the strength of concrete exposed to high temperatures have not been synchronized in previous studies. This experimental research aims to evaluate the effect of cooling conditions and the effectiveness of retrofitting concrete subjected to elevated temperatures. Four types of concrete: M 20 normal concrete (NC); M 20 metakaolin concrete (MC); M 40 standard concrete (SC); and M 40 self-compacting concrete (SCC) are considered in this study. A total of 864 samples consisting of cube, beam, and cylinder specimens are subjected to sustained elevated temperatures of 400oC, 600oC, and 800oC for 2 hours rating. The weight and strength of half of the heat-damaged samples are assessed following natural air cooling (NAC) and water jet cooling (WJC). The remaining 50% of samples retrofitted with carbon fiber reinforced polymer (CFRP) are tested to evaluate the upgraded strength. The experimental findings demonstrate that water jet cooling (WJC) causes more strength degradation, and CFRP proves to be effective in restoring the strength of heat-deteriorated specimens. Overall, self-compacting concrete (SCC) has shown high resistance to elevated temperatures. Doi: 10.28991/CEJ-2023-09-07-013 Full Text: PD

    SEISMIC LATERAL FORCE DISTRIBUTION FOR DUCTILITY-BASED DESIGN OF STEEL PLATE SHEAR WALLS

    No full text
    The thin unstiffened steel plate shear wall (SPSW) system has now emerged as a promising lateral load resisting system. Considering performance-based design requirements, a ductility-based design was recently proposed for SPSW systems. It was felt that a detailed and closer look into the aspect of seismic lateral force distribution was necessary in this method. An investigation toward finding a suitable lateral force distribution for ductility-based design of SPSW is presented in this paper. The investigation is based on trial designs for a variety of scenarios where five common lateral force distributions are considered. The effectiveness of an assumed trial distribution is measured primarily on the basis of how closely the design achieves the target ductility ratio, which is measured in terms of the roof displacement. All trial distributions are found to be almost equally effective. Therefore, the use of any commonly adopted lateral force distribution is recommended for plastic design of SPSW systems

    Efficient Configuration of Storage Rack System as Per Nonlinear Static Pushover Analysis under Triangular and Uniform Pattern of Lateral Loading Pattern

    No full text
    The individual components of cold-formed storage rack system are most vulnerable to local and torsional buckling lateral loads in addition to under gravity. Deterministic allotment of strength and ductility in the structural components and performance evaluation of appropriate techniques is considered in the capacity based design of cold-formed pallet rack system. Nonlinear time history analysis (NTHA) and nonlinear static pushover analysis (NSPA) are most commonly followed techniques for seismic performance evaluation of any structural systems. Although, NTHA is the most correct technique of seismic demand forecasting and performance evaluation, it is computationally heavy and even requires the selection and application of relevant set of ground excitations. A simple method for the nonlinear static analysis of complicated structures subjected to gradually increasing lateral loads (pushover analysis) is presented here. This paper presents investigation of efficient configuration of conventional pallet racking system on the basis of seismic performance by using NSPA. Finite element models of two different configurations of conventional pallet racking system are prepared and analyzed on the general purpose FE platform using ABAQUS 6.12 under monotonic unidirectional lateral loads. Results show that conventional pallet racking system with horizontal and inclined bracing is more efficient as evidenced from a fair judgment of the overall displacement, base shear and yielding demands

    Battery Operated Automated Spray by Using Sensors

    No full text
    Insects are largely responsible for the crop destruction. Insecticides or pesticides, a man made or natural preparation are used to kill insects or otherwise control their reproduction. These herbicides, pesticides, and fertilizers are applied to agricultural crops with the help of a special device known as a "Sprayer," sprayer provides optimum performance with minimum efforts. The invention of a sprayer, pesticides, fertilizers, bring revolution in the agriculture or horticulture sector especially by the invention of sprayers, enable farmers to obtain maximum agricultural output. They are used for garden spraying, weed and pest control, liquid fertilizing and plant leaf polishing
    corecore