43 research outputs found

    The Change of Protein Intradomain Mobility on Ligand Binding: Is It a Commonly Observed Phenomenon?

    Get PDF
    AbstractAnalysis of changes in the dynamics of protein domains on ligand binding is important in several aspects: for the understanding of the hierarchical nature of protein folding and dynamics at equilibrium; for analysis of signal transduction mechanisms triggered by ligand binding, including allostery; for drug design; and for construction of biosensors reporting on the presence of target ligand in studied media. In this work we use the recently developed HCCP computational technique for the analysis of stabilities of dynamic domains in proteins, their intrinsic motions and of their changes on ligand binding. The work is based on comparative studies of 157 ligand binding proteins, for which several crystal structures (in ligand-free and ligand-bound forms) are available. We demonstrate that the domains of the proteins presented in the Protein DataBank are far more robust than it was thought before: in the majority of the studied proteins (152 out of 157), the ligand binding does not lead to significant change of domain stability. The exceptions from this rule are only four bacterial periplasmic transport proteins and calmodulin. Thus, as a rule, the pattern of correlated motions in dynamic domains, which determines their stability, is insensitive to ligand binding. This rule may be the general feature for a vast majority of proteins

    Deceleration of the electron transfer reaction in the photosynthetic reaction centre as a manifestation of its structure fluctuations

    No full text
    Aim. To extract information on the nature of protein structural relaxation from the kinetics of electron transfer reaction in the photosynthetic reaction centre (RC). Methods. The kinetic curves obtained by absorption spectroscopy are processed by a maximum entropy method to get the spectrum of relaxation times. Results. A series of distinctive peaks of this spectrum in the interval from 0.1 s to hundreds of seconds is revealed. With the time of exposure of the sample to actinic light increasing, the positions of the peak maxima grow linearly. Conclusions. Theoretical analysis of these results reveals the formation of several structural states of the RC protein. Remarkably, in each of these states the slow reaction kinetics follow the same fractional power law that reflects the glass-like properties of the protein.Цель. Определить характер структурной релаксации белка из анализа кинетики реакции электрон- ного транспорта в фотосинтетическом реакционном центре (РЦ). Методы. Кинетические кривые, полученные методами абсорбционной спектроскопии, обрабатывали с использованием метода максимальной энтропии для получения спектра времен релаксации. Результаты. Обнаружен ряд характерных пиков этого спектра в интервале от 0,1 до сотен секунд. С увеличением длительности экспозиции образца в актиничном свете положения максимумов пиков линейно возрастают. Выводы. Из теоретического анализа результатов следует, что появляется несколько структурных состояний белкового компонента РЦ, в которых, однако, медленная кинетика реакции подчиняется одному и тому же дробно-степенному закону, отражающему стеклоподобные свойства белка.Мета. Визначити характер структурної релаксації білка з аналізу кінетики реакції електронного транспорту у фотосинтетичному реакційному центрі (РЦ). Методи. Кінетичні криві, одержані з використанням абсорбційної спектроскопії, обробляли методом максимальної ентропії для отримання спектра часів релаксації. Результати. Знайдено низку характерних піків цього спектра в интервалі від 0,1 до сотень секунд. Зі збільшенням тривалості експозиції зразка в актинічному світлі положення максимумів піків лінійно зростають. Висновки. З теоретичного аналізу результатів випливає, що виникає декілька структурних станів білкового компонента РЦ, у яких, однак, повільна кінетика реакції підпорядкована одному й тому ж дрiбно-ступеневому закону, що відбиває склоподібні властивості білка

    Semi-quantitative model of the gating of KcsA ion channel. 2. Dynamic self-organization model of the gating

    No full text
    The aim of this series of papers is to develop the semi-quantitative theory of the gating of KcsA channel. Methods. For this purpose available structural and electrophysiological data and the results of molecular dynamics simulations were used in the context of the concept of dynamical self-organization. In the second paper we describe the principles of dynamic self-organization and develop the theory of KcsA channel gating based on this concept. Conclusions. Present work is the first successful attempt of combining the structure and dynamics of real protein and the general concept of dynamic self-organization.Мета даної серії робіт полягає у розробці напівкількісної теорії воротних процесів в іонному каналі KcsA. Методи. Для цього залучено доступні експериментальні дані, а також результати молекулярної динаміки у контексті концепції динамічної самоорганізації. Результати. У другій роботі серії описано принципи динамічної самоорганізації та розроблено теорію воротних процесів у каналі KcsA, що базується на цих принципах. Наведено першу успішну спробу об’єднання даних щодо структури та динаміки реального білка з концепцією динамічної самоорганізації.Целью данной серии работ является разработка полуколичественной теории воротных процессов в ионном канале KcsA. Методы. Для этого использованы доступные экспериментальные данные, а также результаты молекулярной динамики в контексте концепции динамической самоорганизации. Результаты. Во второй работе серии описаны принципы динамической самоорганизации и разработана теория воротных процессов в канале KcsA, базирующаяся на этих принципах. Представлена первая успешная попытка объединения данных о структуре и динамике реального белка с концепцией динамической самоорганизации

    Semi-quantitative model of the gating of KcsA ion channel. 1. Geometry and energetics of the gating

    No full text
    The aim of this series of papers is to develop the semi-quantitative theory of the gating of KcsA channel. For this purpose the available structural and electrophysiological data and the results of molecular dynamics simulations were used in the context of the concept of dynamical self-organization. In the first paper we describe the simplified model of the geometry and energetics of the gating process. This work is the first successful attempt of combining the structure and dynamics of a real protein and the general concept of dynamic self-organization.Мета даної серії робіт полягає у розробці напівкількісної теорії воротних процесів в іонному каналі KcsA. Для цього залучено доступні експериментальні дані, а також результати молекулярної динаміки у контексті концепції динамічної самоорганізації. У першій роботі серії представлено спрощену модель геометрії та енергетики воротних процесів. Наведено першу успішну спробу об’єднання даних щодо структури та динаміки реального білка з концепцією динамічної самоорганізації.Целью данной серии работ является разработка полуколи- чественной теории воротных процессов в ионном канале KcsA. Для этого использованы доступные экспериментальные данные, а также результаты молекулярной динамики в контексте концепции динамической самоорганизации. В первой работе серии представлена упрощенная модель геометрии и энергетики воротных процессов. Приведена первая успешная попытка объединения данных о структуре и динамике реального белка с концепцией динамической самоорганизации

    Equilibration kinetics in isolated and membrane-bound photosynthetic reaction centers upon illumination: a method to determine the photoexcitation rate

    Get PDF
    Kinetics of electron transfer, following variation of actinic light intensity, for photosynthetic reaction centers (RCs) of purple bacteria (isolated and membrane-bound) were analyzed by measuring absorbance changes in the primary photoelectron donor absorption band at 865 nm. The bleaching of the primary photoelectron donor absorption band in RCs, following a sudden increase of illumination from the dark to an actinic light intensity of Iexp, obeys a simple exponential law with the rate constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}(αIexp  +  krec) (\alpha I_{\exp } \; + \;k_{\text{rec}} ) \end{document}, in which α is a parameter relating the light intensity, measured in mW/cm2, to a corresponding theoretical rate in units of reciprocal seconds, and krec is the effective rate constant of the charge recombination in the photosynthetic RCs. In this work, a method for determining the α parameter value is developed and experimentally verified for isolated and membrane-bound RCs, allowing for rigorous modeling of RC macromolecule dynamics under varied photoexcitation conditions. Such modeling is necessary for RCs due to alterations of the forward photoexcitation rates and relaxation rates caused by illumination history and intramolecular structural dynamics effects. It is demonstrated that the classical Bouguer–Lambert–Beer formalism can be applied for the samples with relatively low scattering, which is not necessarily the case with strongly scattering media or high light intensity excitation

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Hierarchy of Motions and Quasi-Particles in a Simplified Model of Potassium Channel Selectivity Filter

    No full text

    Загальна теорія іонних каналів з багатократною заселеністю

    No full text
    У статті представлений загальний теоретичний підхід, що дозволяє описати провідність іонних каналів з множинною заселеністю. Він базується на реальній структурі калієвого каналу KcsA, але не обмежується даним каналом. Показано, що рух іонів у селективному фільтрі каналу є істотно колективним і може бути редукованим до руху єдиної квазічастинки - квазііону. Концепція квазііонів дозволяє пояснити явище безбар'єрної виштовхувальної провідності в селективному фільтрі та уникнути повного опису руху індивідуальних іонів у багатоіонному каналі, що значно спрощує задачу. Показано, що квазііони є фактичними переносниками заряду в каналі.We present a general theoretical approach, which explains the conductance in the ion channel with multiple occupancy. The model is based on the design of KcsA K* channel, but not limited to it. We show that the motion of the ions in the selective filter is concerted and can be reduced to the motion of a single quasiparticle called quasi-ion. The concept of quasi-ions provides an elegant explanation of barrier-less "knock-on" conduction in the selectivity filter and allows us to avoid explicit description of the motion of individual ions in the multi-ion channel. The quasi-ions perform actual charge transfer in the channel
    corecore