1,034 research outputs found

    Productivity of corn hybrids in relation to the seeding rate

    Get PDF
    ArticlePotential yield of corn hybrids with a different FAO number is limited by not only rainfall amount, average soil and air temperature throughout vegetation period, but also directly depends on plant density. The study and practical application of special agricultural techniques allows us to limit and mitigate the negative impact of these factors on the productivity of maize, depending on the indicators under study and the soil and climatic resources of the cultivation zone. Therefore, the study of the influence of the seeding rate on the growth and development of corn plants remains relevant. The results presented make it possible to choose optimal seeding rates for corn hybrids of early and middle groups of ripeness (FAO 180-280). Overcrowding from 61,000 to 93,000 seeds ha-1 leads to increase in interstage period 'sprouting–wax ripeness' of Rodnik 179SV hybrid for 4 days, of MAS 12R and AMELIOR hybrids–for 2 days, and of MAS 30K hybrid – for 3 days. Hybrids Rodnik 179SV and AMELIOR reached maximum height – 217 cm and 214 cm respectively – at seeding rate of 73,000 seeds ha-1 , while hybrids MAS 12R and MAS 30K grew up to their 213 cm and 223 cm respectively at seeding rate of 77,000 seeds ha-1 . Decrease in seeding rate to less than 73,000 seeds ha-1 and, contrary to it, overcrowding of seeds of more than 77,000 seeds ha-1 leads to decrease in corn hybrid plant height. Agronomically, the most efficient for maximizing early ripe Rodnik 179SV and MAS 12R hybrids yields (6.39 and 6.73 t ha-1 ) and middle-early ripe AMELIOR hybrid yield (6.81 t ha-1 ) was the seeding rate of 73,000 seeds ha-1 , while the highest yield of middle MAS 30K hybrid (7.21 t ha-1 ) was at the seeding rate of 77,000 seeds ha-1

    Canted antiferromagnetic phase of the Ξ½=0\nu=0 quantum Hall state in bilayer graphene

    Full text link
    Motivated to understand the nature of the strongly insulating Ξ½=0\nu=0 quantum Hall state in bilayer graphene, we develop the theory of the state in the framework of quantum Hall ferromagnetism. The generic phase diagram, obtained in the presence of the isospin anisotropy, perpendicular electric field, and Zeeman effect, consists of the spin-polarized ferromagnetic (F), canted antiferromagnetic (CAF), and partially (PLP) and fully (FLP) layer-polarized phases. We address the edge transport properties of the phases. Comparing our findings with the recent data on suspended dual-gated devices, we conclude that the insulating Ξ½=0\nu=0 state realized in bilayer graphene at lower electric field is the CAF phase. We also predict a continuous and a sharp insulator-metal phase transition upon tilting the magnetic field from the insulating CAF and FLP phases, respectively, to the F phase with metallic edge conductance 2e2/h2e^2/h, which could be within the reach of available fields and could allow one to identify and distinguish the phases experimentally.Comment: 5 pages, 3 figs; v2: published versio

    Plasmonic nanostructures with local temporal response: a platform for time-varying photonics

    Get PDF
    This work is devoted to the development of an approach for implementation and designing time-varying media. A mechanism based on the use of plasmonic nanostructures with a reduced plasmon lifetime is proposed. It is shown that such nanostructures can be used to enhance the strength and speed of modulation of the refractive index ofnonlinear media. This is achieved through decreasing of the spectral dispersion of the real permittivity. Plasmonic materials with peculiar optical properties, such as flatdispersion in the near-infrared range, were synthesized. For this purpose, we prepared TiON thin films and performed thermal post-treatment for fine-tuning permittivity of TiON. It has been shown that the proposed materials allow one to achieve an ultrashort plasmon lifetime on the order of 0.1 fs, which is an order of magnitude shorter than in the case of traditional plasmonic materials

    Subexponential estimations in Shirshov's height theorem (in English)

    Full text link
    In 1993 E. I. Zelmanov asked the following question in Dniester Notebook: "Suppose that F_{2, m} is a 2-generated associative ring with the identity x^m=0. Is it true, that the nilpotency degree of F_{2, m} has exponential growth?" We show that the nilpotency degree of l-generated associative algebra with the identity x^d=0 is smaller than Psi(d,d,l), where Psi(n,d,l)=2^{18} l (nd)^{3 log_3 (nd)+13}d^2. We give the definitive answer to E. I. Zelmanov by this result. It is the consequence of one fact, which is based on combinatorics of words. Let l, n and d>n be positive integers. Then all the words over alphabet of cardinality l which length is greater than Psi(n,d,l) are either n-divided or contain d-th power of subword, where a word W is n-divided, if it can be represented in the following form W=W_0 W_1...W_n such that W_1 >' W_2>'...>'W_n. The symbol >' means lexicographical order here. A. I. Shirshov proved that the set of non n-divided words over alphabet of cardinality l has bounded height h over the set Y consisting of all the words of degree <n. Original Shirshov's estimation was just recursive, in 1982 double exponent was obtained by A.G.Kolotov and in 1993 A.Ya.Belov obtained exponential estimation. We show, that h<Phi(n,l), where Phi(n,l) = 2^{87} n^{12 log_3 n + 48} l. Our proof uses Latyshev idea of Dilworth theorem application.Comment: 21 pages, Russian version of the article is located at the link arXiv:1101.4909; Sbornik: Mathematics, 203:4 (2012), 534 -- 55

    Strong focusing higher-order laser modes: Transverse and longitudinal optical fields

    Get PDF
    Β© Published under licence by IOP Publishing Ltd. The distribution of transverse and longitudinal optical fields in tightly focused higher-order laser beams is investigated. Polarization-dependent fingerprints of transverse and longitudinal optical fields are experimentally captured by means of photoinduced surface deformations in azobenzene polymer thin films

    Π¦Π˜ΠšΠ›ΠžΠšΠžΠΠ’Π•Π Π’ΠžΠ  Π‘ ΠšΠžΠœΠ‘Π˜ΠΠ˜Π ΠžΠ’ΠΠΠΠ«Πœ Π—ΠΠšΠžΠΠžΠœ Π£ΠŸΠ ΠΠ’Π›Π•ΠΠ˜Π― Π”Π›Π― Π‘Π˜Π‘Π’Π•Πœ Π­Π›Π•ΠšΠ’Π ΠžΠ‘ΠΠΠ‘Π–Π•ΠΠ˜Π― ΠΠ’Π’ΠžΠΠžΠœΠΠ«Π₯ ΠžΠ‘ΠͺΠ•ΠšΠ’ΠžΠ’

    Get PDF
    The present paper considers cycle-converter with complicated control law. The methodj complicated control law generating is presented. The scheme of power circuits is introduced. VoltaΒ and current curves for classical cycle-converter and cycle-converter with complicated control lawiΒ discussed. Introducing of complicated control law improves output voltage quality, increaΒ fundamental harmonic's amplitude and input power factor. The article is attractive in the field of iΒ power electronics.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся Ρ†ΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€ с ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡΒ Π²Π΅Π½Ρ‚ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ‚Π°ΠΌΠΈ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ способ формирования ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ сигнала управлСния. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° схСма силовых Ρ†Π΅ΠΏΠ΅ΠΉ исслСдуСмого прСобразоватСля. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡΒ ΡΠΏΡŽΡ€Ρ‹ ΠΊΡ€ΠΈΠ²Ρ‹Ρ… Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ напряТСния ΠΈ Ρ‚ΠΎΠΊΠ° для классичСской схСмы Ρ†ΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π° ΠΈ для схСмы прСобразоватСля с ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ управлСния. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ комбинированного сигнала управлСния ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ качСство Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ напряТСния, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ амплитуду основной Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΊΠΈ ΠΈ Π²Ρ…ΠΎΠ΄Π½ΠΎΠΉ коэффициСнт мощности. Π‘Ρ‚Π°Ρ‚ΡŒΡ прСдставляСт интСрСс для спСциалистов Π² области Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ силовой элСктроники.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся Ρ†ΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€ с ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ ΡƒΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡΒ Π²Π΅Π½Ρ‚ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ‚Π°ΠΌΠΈ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ способ формирования ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ сигнала управлСния. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° схСма силовых Ρ†Π΅ΠΏΠ΅ΠΉ исслСдуСмого прСобразоватСля. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡΒ ΡΠΏΡŽΡ€Ρ‹ ΠΊΡ€ΠΈΠ²Ρ‹Ρ… Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ напряТСния ΠΈ Ρ‚ΠΎΠΊΠ° для классичСской схСмы Ρ†ΠΈΠΊΠ»ΠΎΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚Π΅Ρ€Π° ΠΈ для схСмы прСобразоватСля с ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ управлСния. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ комбинированного сигнала управлСния ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ качСство Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠ³ΠΎ напряТСния, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ амплитуду основной Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΊΠΈ ΠΈ Π²Ρ…ΠΎΠ΄Π½ΠΎΠΉ коэффициСнт мощности. Π‘Ρ‚Π°Ρ‚ΡŒΡ прСдставляСт интСрСс для спСциалистов Π² области Π°Π²ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ силовой элСктроники

    ГСодинамичСская модСль Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠ³ΠΎ строСния палСосубдукционной Π·ΠΎΠ½Ρ‹ Π½Π° восточной ΠΎΠΊΡ€Π°ΠΈΠ½Π΅ Русской ΠΏΠ°Π»Π΅ΠΎΠΏΠ»ΠΈΡ‚Ρ‹ ΠΈ распрСдСлСниС мСстороТдСний Π½Π΅Ρ„Ρ‚ΠΈ ΠΈ Π³Π°Π·Π°

    Get PDF
    Known hypothesis of M. Barazangi that quasilinear geological and tectonic zones represent the banded structures, which are parallel to the Urals paleo volcanic mountain belt was used. These zones can be in some interval of distances from a mountain paleo volcanic belt. On the size of this interval (~ 103 km) and the periodical arrangement of quasilinear geological and tectonic zones (of about ~ 300 km width), the paleo subduction speed (~ 5 – 6 cm a year) was estimated on the example of some Siberian regions.Использована извСстная Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π° M. Barazangi ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π·ΠΈΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ Π³Π΅ΠΎΠ»ΠΎΠ³ΠΎ-тСктоничСскиС Π·ΠΎΠ½Ρ‹ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой полосчатыС структуры, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ палСовулканичСскому Π£Ρ€Π°Π»ΡŒΡΠΊΠΎΠΌΡƒ Π³ΠΎΡ€Π½ΠΎΠΌΡƒ поясу ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° расстояний ΠΎΡ‚ пояса. По Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ этого ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° (~10 3 ΠΊΠΌ) ΠΈ пСриодичСскому Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡŽ ΠΊΠ²Π°Π·ΠΈΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… Π³Π΅ΠΎΠ»ΠΎΠ³ΠΎ-тСктоничСских Π·ΠΎΠ½ (с ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ ~ 300 ΠΊΠΌ) оцСниваСтся ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ палСосубдукции (~ 5 – 6 см Π² Π³ΠΎΠ΄) Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² Π‘ΠΈΠ±ΠΈΡ€ΠΈ. ΠΠ»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²ΠΎΠΉ ΡΡ‚ΠΎΠ»ΡŒ высокой скорости палСосубдукции ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΡƒΠ³ΠΎΠ» палСосубдукции Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ мСньшС 10Β°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ расчСта ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Π΄Ρ€Π΅Π²Π½ΠΈΡ… ΠΈ соврСмСнных литосфСрных Π±Π»ΠΎΠΊΠΎΠ²
    • …
    corecore