3,098 research outputs found

    Excitation of hydrogen molecule by electron impact, III - Singlet-triplet excitations

    Get PDF
    Exchange excitation of hydrogen molecule by electron impact from ground to triplet electronic stat

    On Heegner points of large conductors

    Full text link
    Given a parametrisation of an elliptic curve over Q by a Shimura curve, we show that the images of almost all Heegner points are of infinite order. For parametrisations of elliptic curves by modular curves this was proven earlier by Nekovar and Schappacher by a different method

    The density of ramified primes in semisimple p-adic Galois representations

    Get PDF
    We prove that the density of ramified primes in semisimple p-adic representations of Galois groups of number fields is 0. Ravi Ramakrishna has produced examples of such representations that are infinitely ramified

    Local Identities Involving Jacobi Elliptic Functions

    Get PDF
    We derive a number of local identities of arbitrary rank involving Jacobi elliptic functions and use them to obtain several new results. First, we present an alternative, simpler derivation of the cyclic identities discovered by us recently, along with an extension to several new cyclic identities of arbitrary rank. Second, we obtain a generalization to cyclic identities in which successive terms have a multiplicative phase factor exp(2i\pi/s), where s is any integer. Third, we systematize the local identities by deriving four local ``master identities'' analogous to the master identities for the cyclic sums discussed by us previously. Fourth, we point out that many of the local identities can be thought of as exact discretizations of standard nonlinear differential equations satisfied by the Jacobian elliptic functions. Finally, we obtain explicit answers for a number of definite integrals and simpler forms for several indefinite integrals involving Jacobi elliptic functions.Comment: 47 page

    Exact Solutions of the Two-Dimensional Discrete Nonlinear Schr\"odinger Equation with Saturable Nonlinearity

    Full text link
    We show that the two-dimensional, nonlinear Schr\"odinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the effective Peierls-Nabarro barrier for the pulse-like soliton solution is zero

    Exact Moving and Stationary Solutions of a Generalized Discrete Nonlinear Schrodinger Equation

    Get PDF
    We obtain exact moving and stationary, spatially periodic and localized solutions of a generalized discrete nonlinear Schr\"odinger equation. More specifically, we find two different moving periodic wave solutions and a localized moving pulse solution. We also address the problem of finding exact stationary solutions and, for a particular case of the model when stationary solutions can be expressed through the Jacobi elliptic functions, we present a two-point map from which all possible stationary solutions can be found. Numerically we demonstrate the generic stability of the stationary pulse solutions and also the robustness of moving pulses in long-term dynamics.Comment: 22 pages, 7 figures, to appear in J. Phys.

    Soliton Lattice and Single Soliton Solutions of the Associated Lam\'e and Lam\'e Potentials

    Get PDF
    We obtain the exact nontopological soliton lattice solutions of the Associated Lam\'e equation in different parameter regimes and compute the corresponding energy for each of these solutions. We show that in specific limits these solutions give rise to nontopological (pulse-like) single solitons, as well as to different types of topological (kink-like) single soliton solutions of the Associated Lam\'e equation. Following Manton, we also compute, as an illustration, the asymptotic interaction energy between these soliton solutions in one particular case. Finally, in specific limits, we deduce the soliton lattices, as well as the topological single soliton solutions of the Lam\'e equation, and also the sine-Gordon soliton solution.Comment: 23 pages, 5 figures. Submitted to J. Math. Phy

    Anti-isospectral Transformations, Orthogonal Polynomials and Quasi-Exactly Solvable Problems

    Get PDF
    We consider the double sinh-Gordon potential which is a quasi-exactly solvable problem and show that in this case one has two sets of Bender-Dunne orthogonal polynomials . We study in some detail the various properties of these polynomials and the corresponding quotient polynomials. In particular, we show that the weight functions for these polynomials are not always positive. We also study the orthogonal polynomials of the double sine-Gordon potential which is related to the double sinh-Gordon case by an anti-isospectral transformation. Finally we discover a new quasi-exactly solvable problem by making use of the anti-isospectral transformation.Comment: Revtex, 19 pages, No figur
    corecore