8,637 research outputs found

    Three-body treatment of the penetration through the Coulomb field of a two-fragment nucleus

    Full text link
    On the basis of the Faddeev integral equations method and the Watson- Feshbach concept of the effective (optical) interaction potential, the first fully consistent three-body approach to the description of the penetration of a charged particle through the Coulomb field of a two-particle bound complex (composed of one charged and one neutral particles) has been developed. A general formalism has been elaborated and on its basis, to a first approximation in the Sommerfeld parameter, the influence of the nuclear structure on the probability of the penetration of a charged particle (the muon, the pion, the kaon and the proton) through the Gamow barrier of a two-fragment nucleus (the deuteron and the two lightest lambda hypernuclei, lambda hypertriton and lambda hyperhelium-5, has been calculated and studied.Comment: LaTeX, 30 pages, 4 eps figure

    Ab-initio calculations for structural properties of Zr-Nb alloys

    Get PDF
    Ab-initio calculations for the structural properties of Zr-Nb alloys at different values of the niobium concentration are done at zero temperature. Different cases for Zr-Nb alloys with unit cells having BCC and HCP structures are considered. Optimal values of the lattice constants are obtained. Critical value for the niobium concentration corresponding to the structural transformation HCP \rightarrow BCC at zero temperature is determined. Electronic densities of states for two different structures with niobium concentrations 12.5% and 25% having HCP and BCC structures, accordingly, are studied.Comment: 8 pages, 4 figure

    Precipitation of Energetic Neutral Atoms and Induced Non-Thermal Escape Fluxes from the Martian Atmosphere

    Full text link
    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo simulations. Distributions of secondary hot atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular dependent cross sections, required for description of the energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. 3D Monte Carlo simulations with accurate energy-angular dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the Monte Carlo simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of secondary hot atoms and molecules, and induced escape fluxes have been determined.Comment: Accepted to the Astrophysical Journa
    corecore