36 research outputs found

    HPLC-DAD/TOF-MS Chemical Compounds Analysis and Evaluation of Antibacterial Activity of Aristolochia longa Root Extracts

    Get PDF
    The present study aimed to determine the phenolic compounds of Arislolochia Ion& root extracts and to evaluate their antibacterial activities on multiresistant strains. Phytochemical analysis revealed the presence of flavonoids, tannins, terpenoids, and alkaloids. The HPLC-DAD analysis of A. longa extracts showed the presence of several major bioactive compounds such as ferulic acid, 4-hydroxycinnamic acid, citric acid, and quinic acid. The agar diffusion method was used for the sensitivity test, while minimal inhibitory concentration (MIC) and minimal bactericidal concentration values were determined by microdilution assay. Different tests were carried out on 3 clinical multiresistant strains and 3 reference strains. The diameter of inhibition of Staphylococcus aureus ATCC 25923 induced by the ethyl acetate fraction at 200 mg/mL was 25 +/- 1 mm. Moreover, Escherichia coli ATCC 29522 showed a great sensitivity toward all the concentrations tested. The MICs of the active extracts vary between 12.5 and 100 mg/mL with a bacteriostatic effect on Pseudomonas aemginosa ATCC 27853, Enterococcus faecalis, and S. aureus ATCC 25923.Peer reviewe

    Uncovering temperature-tempted coordination of inclusions within ultra-high-strength-steel via in-situ spectro-microscopy

    Get PDF
    Funding Information: Authors acknowledge Academy of Finland grant #311934 and Kvantum Institute, University of Oulu (Project CLEAN2STEEL) for the financial support. We also thank the crew of the MAX IV laboratory for their support during the beamtime operation. Authors would like to thank Mr. Tun Nyo for the assistance in sample preparation for SEM and X-PEEM, Mr. Jaakko Hannula for insightful discussions, and the Centre for Material Analysis, University of Oulu is also acknowledged for in-house characterizations. Publisher Copyright: © 2022 The Author(s)Despite the common challenge of investigating non-metallic inclusions within ultra-high-strength-steel (UHSS) at sub-micrometer scale via conventional methods, probing nitride inclusions at elevated temperatures is vital for guiding steel’ performance. Herein, an in-situ spectro-microscopic determination using advanced Synchrotron X-ray absorption spectroscopy (XAS) coupled with photoelectron emission microscopy (PEEM) is employed to explore the local structure and electronic properties of selective h-boron nitride (h-BN) containing inclusions (A1 and A2) embedded within steel matrix. While the variation in the relative intensity of π∗/σ∗ excitonic peaks at spatially different locations refers to the polarization and or thickness effects. Several minute features observed in the 192–195 eV energy range show oxygen (O) substituted nitrogen (N) defects (ON,2N,3N), which are more dominant in A2 inclusion. The observed dominance further explains the relatively high intense π∗ peak in A2 due to increased localization. Weak shoulder on the left side of π∗ peak in both room and high-temperature XAS spectra is ascribed to the interaction between h-BN and the local environment, such as Ca-based inclusion or steel matrix. Defects are commonly found in h-BN, and precise identification of the same is vital as they affect the overall physical, chemical, and mechanical properties. Moreover, significant changes in high-temperature B K-edge XAS spectra, such as relative intensity of π∗/σ∗ excitonic peaks at the same location and reduced intensity of defects, suggest the adjusting nature of BN inclusion, complicating their precise prediction and control towards clean steel production.Peer reviewe

    Unveiling nano-scaled chemical inhomogeneity impacts on corrosion of Ce-modified 2507 super-duplex stainless steels

    Get PDF
    The widely used stainless steels and their deformed variants are anticorrosive in ambient conditions due to passivation layers composed of chromium oxides. Conventionally, corrosion and erosion of the steels are attributed to the breakdown of such layers but seldomly to the origin that depends on surface heterogeneity at the microscopic level. In this work, the nanometer-scaled chemical heterogeneity at the surface unveiled via spectro-microscopy and chemometric analysis unexpectedly dominates the breakdown and corrosion behavior of the cold-rolled Ce-modified 2507 super-duplex stainless steels (SDSS) over its hot-deformed counterpart. Though relatively uniformly covered by a native Cr2O3 layer revealed by X-ray photoemission electron microscopy, the cold-rolled SDSS behaved poorly in passivity because of locally distributed Fe3+ rich nano-islands over the Fe/Cr oxide layer. This atomic-level knowledge provides a deep understanding of corrosion of stainless steel and is expected to benefit corrosion controls of similar high-alloyed metals

    Special Issue “Advanced Spectroscopy Techniques in Food Analysis: Qualitative and Quantitative Chemometric Approaches”

    No full text
    The globalization of the food market has created a pressing need for food producers to meet the ever-increasing demands of consumers while ensuring adherence to stringent food safety and quality standards [...

    Multi-Way Analysis Coupled with Near-Infrared Spectroscopy in Food Industry: Models and Applications

    No full text
    Near-infrared spectroscopy (NIRS) is a fast and powerful analytical tool in the food industry. As an advanced chemometrics tool, multi-way analysis shows great potential for solving a wide range of food problems and analyzing complex spectroscopic data. This paper describes the representative multi-way models which were used for analyzing NIRS data, as well as the advances, advantages and limitations of different multi-way models. The applications of multi-way analysis in NIRS for the food industry in terms of food process control, quality evaluation and fraud, identification and classification, prediction and quantification, and image analysis are also reviewed. It is evident from this report that multi-way analysis is presently an attractive tool for modeling complex NIRS data in the food industry while its full potential is far from reached. The combination of multi-way analysis with NIRS will be a promising practice for turning food data information into operational knowledge, conducting reliable food analyses and improving our understanding about food systems and food processes. To the best of our knowledge, this is the first paper that systematically reports the advances on models and applications of multi-way analysis in NIRS for the food industry

    The Response of Nutrient Uptake, Photosynthesis and Yield of Tomato to Biochar Addition under Reduced Nitrogen Application

    No full text
    Tomato is an important economic crop that is widely consumed worldwide. Tomato production is mainly limited by the use of nitrogen fertilizer, sunlight, soil and water conditions. Biochar is one of the soil amendments, and it is recognized as a promising practice for improving crop production in agriculture. The effect of biochar on the photosynthetic traits and tomato yield under reduced nitrogen fertilizer application is still not well understood. The objective of this research is to investigate the influence of biochar application on the photosynthesis and yield of tomato under reduced nitrogen fertilizer application from the perspectives of the nutrient uptake of plants (nitrogen and phosphorus), leaf photosynthetic pigment and leaf gas exchange parameters. Two-year greenhouse experiments containing six biochar levels (0, 10, 30, 50, 70, and 90 t ha−1) and two nitrogen fertilizer application rates (190 and 250 kg ha−1) were conducted. Compared with C0, C50 significantly improved the nitrogen uptake (74–80%) and phosphorus uptake (76–95%) by tomato plants and further enhanced the photosynthetic traits of tomato leaves (net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr) and chlorophyll (2–60%), which lead to the highest gains in tomato yield (more than 50%) even when the applied nitrogen fertilizer was significantly reduced (from 250 kg ha−1 to 190 kg ha−1). The photosynthesis rate had a linear correlation with the total nitrogen and phosphorus accumulation and tomato yield. The results will enhance our understandings about the effect of biochar on the photosynthesis and yield of tomato and be of importance for practical agricultural management

    Biochar Promotes Nitrogen Transformation and Tomato Yield by Regulating Nitrogen-Related Microorganisms in Tomato Cultivation Soil

    No full text
    Nitrogen (N) transformation in soil directly determines the effectiveness of N for plant growth. Biochar has received evermore attention because of its significant ability to improve soil. However, the effects of biochar on N-related microorganisms (Lycopersicon esculentum Mill.) in tomato cultivation soil, N transformation, utilisation of water and N fertiliser, and tomato yield remain unclear. The objective of this study was to investigate the responses of N-related microorganisms to biochar and N fertilisation in soil, along with the implications of biochar for altering N transformation, N uptake by tomatoes, and utilisation of water and N fertiliser. A two-year greenhouse experiment containing six biochar levels under drip irrigation (0, 10, 30, 50, 70, and 90 t ha−1) and two N fertiliser application rates (190 and 250 kg ha−1) was conducted in the northwest of China. The results showed that adding biochar significantly promoted urease activity, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and the number of amoA-type nitrifiers in the soil. The MBC:N ratio and the number of nirS-type denitrifiers were significantly inhibited when the added amount of biochar was greater than or equal to 30 t ha−1. Moreover, biochar can increase the water content in the soil and can reduce the N lost to leaching. The inorganic N (NO3− and NH4+) in the soil could be better maintained in the rootzone and better absorbed by tomato plants when adding 30, 50, and 70 t ha−1 of biochar. The amount of N fertiliser could be reduced by 24% without a significant loss of tomato yield when the amount of biochar added was over 30 t ha−1. It was indicated that the yield of tomatoes and the net profits were quadratically related to the application rate of biochar. In the test area, 53 t ha−1 of biochar with 190 kg ha−1 of N and 44.6 t ha−1 of biochar with 190 kg ha−1 of N were calculated to be the best amounts from the perspectives of tomato yield and net profit, respectively. Thus, biochar promotes N transformation by regulating N-related microorganisms; hence, it increases the inorganic N in the roots of the plants, reduces N lost to leaching, and significantly promotes the N absorption of tomatoes. The results in this research are of great significance for the development of management strategies for tomato maintenance, environmental protection, and resource conservation

    Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches

    No full text
    In today’s era of increased food consumption, consumers have become more demanding in terms of safety and the quality of products they consume. As a result, food authorities are closely monitoring the food industry to ensure that products meet the required standards of quality. The analysis of food properties encompasses various aspects, including chemical and physical descriptions, sensory assessments, authenticity, traceability, processing, crop production, storage conditions, and microbial and contaminant levels. Traditionally, the analysis of food properties has relied on conventional analytical techniques. However, these methods often involve destructive processes, which are laborious, time-consuming, expensive, and environmentally harmful. In contrast, advanced spectroscopic techniques offer a promising alternative. Spectroscopic methods such as hyperspectral and multispectral imaging, NMR, Raman, IR, UV, visible, fluorescence, and X-ray-based methods provide rapid, non-destructive, cost-effective, and environmentally friendly means of food analysis. Nevertheless, interpreting spectroscopy data, whether in the form of signals (fingerprints) or images, can be complex without the assistance of statistical and innovative chemometric approaches. These approaches involve various steps such as pre-processing, exploratory analysis, variable selection, regression, classification, and data integration. They are essential for extracting relevant information and effectively handling the complexity of spectroscopic data. This review aims to address, discuss, and examine recent studies on advanced spectroscopic techniques and chemometric tools in the context of food product applications and analysis trends. Furthermore, it focuses on the practical aspects of spectral data handling, model construction, data interpretation, and the general utilization of statistical and chemometric methods for both qualitative and quantitative analysis. By exploring the advancements in spectroscopic techniques and their integration with chemometric tools, this review provides valuable insights into the potential applications and future directions of these analytical approaches in the food industry. It emphasizes the importance of efficient data handling, model development, and practical implementation of statistical and chemometric methods in the field of food analysis

    Tensor methods in data analysis of chromatography/mass spectroscopy-based plant metabolomics

    No full text
    Abstract Plant metabolomics is an important research area in plant science. Chemometrics is a useful tool for plant metabolomic data analysis and processing. Among them, high-order chemometrics represented by tensor modeling provides a new and promising technical method for the analysis of complex multi-way plant metabolomics data. This paper systematically reviews different tensor methods widely applied to the analysis of complex plant metabolomic data. The advantages and disadvantages as well as the latest methodological advances of tensor models are reviewed and summarized. At the same time, application of different tensor methods in solving plant science problems are also reviewed and discussed. The reviewed applications of tensor methods in plant metabolomics cover a wide range of important plant science topics including plant gene mutation and phenotype, plant disease and resistance, plant pharmacology and nutrition analysis, and plant products ingredient characterization and quality evaluation. It is evident from the review that tensor methods significantly promote the automated and intelligent process of plant metabolomics analysis and profoundly affect the paradigm of plant science research. To the best of our knowledge, this is the first review to systematically summarize the tensor analysis methods in plant metabolomic data analysis

    Biochar promotes nitrogen transformation and tomato yield by regulating nitrogen-related microorganisms in tomato cultivation soil

    No full text
    Abstract Nitrogen (N) transformation in soil directly determines the effectiveness of N for plant growth. Biochar has received evermore attention because of its significant ability to improve soil. However, the effects of biochar on N-related microorganisms (Lycopersicon esculentum Mill.) in tomato cultivation soil, N transformation, utilisation of water and N fertiliser, and tomato yield remain unclear. The objective of this study was to investigate the responses of N-related microorganisms to biochar and N fertilisation in soil, along with the implications of biochar for altering N transformation, N uptake by tomatoes, and utilisation of water and N fertiliser. A two-year greenhouse experiment containing six biochar levels under drip irrigation (0, 10, 30, 50, 70, and 90 t ha⁻¹) and two N fertiliser application rates (190 and 250 kg ha⁻¹) was conducted in the northwest of China. The results showed that adding biochar significantly promoted urease activity, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and the number of amoA-type nitrifiers in the soil. The MBC:N ratio and the number of nirS-type denitrifiers were significantly inhibited when the added amount of biochar was greater than or equal to 30 t ha⁻¹. Moreover, biochar can increase the water content in the soil and can reduce the N lost to leaching. The inorganic N (NO₃⁻ and NH₄⁺) in the soil could be better maintained in the rootzone and better absorbed by tomato plants when adding 30, 50, and 70 t ha⁻¹ of biochar. The amount of N fertiliser could be reduced by 24% without a significant loss of tomato yield when the amount of biochar added was over 30 t ha⁻¹. It was indicated that the yield of tomatoes and the net profits were quadratically related to the application rate of biochar. In the test area, 53 t ha⁻¹ of biochar with 190 kg ha⁻¹ of N and 44.6 t ha⁻¹ of biochar with 190 kg ha⁻¹ of N were calculated to be the best amounts from the perspectives of tomato yield and net profit, respectively. Thus, biochar promotes N transformation by regulating N-related microorganisms; hence, it increases the inorganic N in the roots of the plants, reduces N lost to leaching, and significantly promotes the N absorption of tomatoes. The results in this research are of great significance for the development of management strategies for tomato maintenance, environmental protection, and resource conservation
    corecore