789 research outputs found

    Language Use Matters: Analysis of the Linguistic Structure of Question Texts Can Characterize Answerability in Quora

    Full text link
    Quora is one of the most popular community Q&A sites of recent times. However, many question posts on this Q&A site often do not get answered. In this paper, we quantify various linguistic activities that discriminates an answered question from an unanswered one. Our central finding is that the way users use language while writing the question text can be a very effective means to characterize answerability. This characterization helps us to predict early if a question remaining unanswered for a specific time period t will eventually be answered or not and achieve an accuracy of 76.26% (t = 1 month) and 68.33% (t = 3 months). Notably, features representing the language use patterns of the users are most discriminative and alone account for an accuracy of 74.18%. We also compare our method with some of the similar works (Dror et al., Yang et al.) achieving a maximum improvement of ~39% in terms of accuracy.Comment: 1 figure, 3 tables, ICWSM 2017 as poste

    Chandra & HST Imaging of the Quasars PKS B0106+013 & 3C345: Inverse Compton X-rays and Magnetized Jets

    Full text link
    We present results from deep (70 ks) Chandra ACIS observations and Hubble Space Telescope ACS F475W observations of two highly optically polarized quasars belonging to the MOJAVE blazar sample, viz., PKS B0106+013 and 1641+399 (3C345). These observations reveal X-ray and optical emission from the jets in both sources. X-ray emission is detected from the entire length of the 0106+013 radio jet, which shows clear bends or wiggles - the X-ray emission is brightest at the first prominent kpc jet bend. A picture of a helical kpc jet with the first kpc-scale bend representing a jet segment moving close(r) to our line of sight, and getting Doppler boosted at both radio and X-ray frequencies, is consistent with these observations. The X-ray emission from the jet end however peaks at about 0.4" (~3.4 kpc) upstream of the radio hot spot. Optical emission is detected both at the X-ray jet termination peak and at the radio hot spot. The X-ray jet termination peak is found upstream of the radio hot spot by around 0.2" (~1.3 kpc) in the short projected jet of 3C345. HST optical emission is seen in an arc-like structure coincident with the bright radio hot spot, which we propose is a sharp (apparent) jet bend instead of a terminal point, that crosses our line of sight and consequently has a higher Doppler beaming factor. A weak radio hot spot is indeed observed less than 1" downstream of the bright radio hot spot, but has no optical or X-ray counterpart. By making use of the pc-scale radio and the kpc-scale radio/X-ray data, we derive constraints on the jet Lorentz factors (Gamma_jet) and inclination angles (theta): for a constant jet speed from pc- to kpc-scales, we obtain a Gamma_jet of ~70 for 0106+013, and ~40 for 3C345. On relaxing this assumption, we derive a Gamma_jet of ~2.5 for both the sources. Upper limits on theta of ~13 degrees are obtained for the two quasars. (ABRIDGED)Comment: 46 pages, 11 figures, Accepted for publication in Ap

    Magnetic Field Geometry in "Red" and "Blue" BL Lacs

    Full text link
    We compare the systematics of the magnetic field geometry in the "red" low-energy peaked BL Lacs (LBLs) and "blue" high-energy peaked BL Lacs (HBLs) using VLBI polarimetric images. The LBLs are primarily "radio--selected" BL Lacs and the HBLs are primarily "X-ray selected". In contrast to the LBLs, which show predominantly transverse jet magnetic fields, the HBLs show predominantly longitudinal fields. Thus, while the SED peaks of core-dominated quasars, LBLs and HBLs form a sequence of increasing frequency, the magnetic field geometry does not follow an analogous sequence. We briefly investigate possible connections between the observed parsec-scale magnetic field structures and circular polarization measurements in the literature on various spatial scales.Comment: 12 pages, 5 figures, Proceedings of the Amsterdam workshop on "Circular polarisation from relativistic jet sources", to be published in Astrophysics and Space Science, eds. Rob Fender & J-P Macquar

    The Powerful Jet and Gamma-Ray Flare of the Quasar PKS 0438−-436

    Get PDF
    PKS 0438−-436 at a redshift of z=2.856z=2.856 has been previously recognized as possessing perhaps the most luminous known synchrotron jet. Little is known about this source since the maximum elevation above the horizon is low for the Very Large Array (VLA). We present the first VLA radio image that detects the radio lobes. We use both the 151 MHz luminosity, as a surrogate for the isotropic radio lobe luminosity, and the lobe flux density from the radio image to estimate a long term, time averaged, jet power, Q‾=1.5±0.7×1047ergs s−1\overline{Q} =1.5\pm 0.7 \times 10^{47} \rm{ergs~s^{-1}}. We analyze two deep optical spectra with strong broad emission lines and estimate the thermal bolometric luminosity of the accretion flow, Lbol=6.7±3.0×1046ergs s−1L_{\rm{bol}} = 6.7 \pm 3.0 \times 10^{46} \rm{ergs~s^{-1}}. The ratio, Q‾/Lbol=3.3±2.6\overline{Q}/L_{\rm{bol}} = 3.3 \pm 2.6 , is at the limit of this empirical metric of jet dominance seen in radio loud quasars and this is the most luminous accretion flow to have this limiting behavior. Despite being a very luminous blazar, it previously had no γ\gamma-ray detections (EGRET, AGILE or FERMI) until December 11 - 13 2016 (54 hours) when FERMI detected a flare that we analyze here. The isotropic apparent luminosity from 100 MeV - 100 GeV rivals the most luminous detected blazar flares (averaged over 18 hours), ∼5−6×1049ergs s−1\sim 5-6 \times 10^{49} \rm{ergs~s^{-1}}. The γ\gamma-ray luminosity varies over time by two orders of magnitude, highlighting the extreme role of Doppler abberation and geometric alignment in producing the inverse Compton emission.Comment: To appear in ApJ. Revision required to replace the last figure file with the current versio

    Chandra Discovery of 10 New X-Ray Jets Associated With FR II Radio Core-Selected AGNs in the MOJAVE Sample

    Get PDF
    The Chandra X-ray observatory has proven to be a vital tool for studying high-energy emission processes in jets associated with Active Galactic Nuclei (AGN).We have compiled a sample of 27 AGN selected from the radio flux-limited MOJAVE (Monitoring of Jets in AGN with VLBA Experiments) sample of highly relativistically beamed jets to look for correlations between X-ray and radio emission on kiloparsec scales. The sample consists of all MOJAVE quasars which have over 100 mJy of extended radio emission at 1.4 GHz and a radio structure of at least 3" in size. Previous Chandra observations have revealed X-ray jets in 11 of 14 members of the sample, and we have carried out new observations of the remaining 13 sources. Of the latter, 10 have Xray jets, bringing the overall detection rate to ~ 78%. Our selection criteria, which is based on highly compact, relativistically beamed jet emission and large extended radio flux, thus provides an effective method of discovering new X-ray jets associated with AGN. The detected X-ray jet morphologies are generally well correlated with the radio emission, except for those displaying sharp bends in the radio band. The X-ray emission mechanism for these powerful FR II (Fanaroff-Riley type II) jets can be interpreted as inverse Compton scattering off of cosmic microwave background (IC/CMB) photons by the electrons in the relativistic jets. We derive viewing angles for the jets, assuming a non-bending, non-decelerating model, by using superluminal parsec scale speeds along with parameters derived from the inverse Compton X-ray model. We use these angles to calculate best fit Doppler and bulk Lorentz factors for the jets, as well as their possible ranges, which leads to extreme values for the bulk Lorentz factor in some cases. When both the non-bending and non-decelerating assumptions are relaxed [abridged]Comment: 38 Pages, 4 Figures, 5 Tables, accepted for publication in Ap
    • …
    corecore