13 research outputs found

    Impact analysis of crossovers in a multi-objective evolutionary algorithm

    Get PDF
    Multi-objective optimization has become mainstream because several real-world problems are naturally posed as a Multi-objective optimization problems (MOPs) in all fields of engineering and science. Usually MOPs consist of more than two conflicting objective functions and that demand trade-off solutions. Multi-objective evolutionary algorithms (MOEAs) are extremely useful and well-suited for solving MOPs due to population based nature. MOEAs evolve its population of solutions in a natural way and searched for compromise solutions in single simulation run unlike traditional methods. These algorithms make use of various intrinsic search operators in efficient manners. In this paper, we experimentally study the impact of different multiple crossovers in multi-objective evolutionary algorithm based on decomposition (MOEA/D) framework and evaluate its performance over test instances of 2009 IEEE congress on evolutionary computation (CEC?09) developed for MOEAs competition. Based on our carried out experiment, we observe that used variation operators are considered to main source to improve the algorithmic performance of MOEA/D for dealing with CEC?09 complicated test problems

    Geographical variation in morphology of Chaetosiphella stipae stipae Hille Ris Lambers, 1947 (Hemiptera: Aphididae: Chaitophorinae)

    Get PDF
    Chaetosiphella stipae stipae is a xerothermophilous aphid, associated with Palaearctic temperate steppe zones or dry mountain valleys, where there are grasses from the genus Stipa. Its geographical distribution shows several populations that are spread from Spain, across Europe and Asia Minor, to Mongolia and China. Geographical variation in chaetotaxy and other morphological features were the basis to consider whether individuals from different populations are still the same species. Moreover, using Ch. stipae stipae and Stipa species occurrences, as well as climatic variables, we predict potential geographical distributions of the aphid and its steppe habitat. Additionally, for Stipa species we projected current climatic conditions under four climate change scenarios for 2050 and 2070. While highly variable, our results of morphometric analysis demonstrates that all Ch. stipae stipae populations are one very variable subspecies. And in view of predicted climate change, we expect reduction of Stipa grasslands. The disappearance of these ecosystems could result in stronger separation of the East-European and Asian steppes as well as European ‘warm-stage’ refuges. Therefore, the geographic morphological variability that we see today in the aphid subspecies Ch. stipae stipae may in the future lead to speciation and creation of separate subspecies or species
    corecore