65 research outputs found

    The effects of quercetin on SW480 human colon carcinoma cells: a proteomic study

    Get PDF
    BACKGROUND: High fruit and vegetable intake is known to reduce the risk of colon cancer. To improve understanding of this phenomenon the action of different phytochemicals on colon cells has been examined. One such compound is quercetin that belongs to the group known as flavonoids. The purpose of this study was to determine the influence of quercetin on the proteome of the SW480 human colon adenocarcinoma cell line, specifically to identify proteins that could be the molecular targets of quercetin in its amelioration of the progression of colon cancer. To this end, two-dimensional gel electrophoresis and mass spectrometry were used to identify proteins that underwent a change in expression following treatment of the cells with 20 μM quercetin. This could elucidate how quercetin may reduce the progression of colon cancer. RESULTS: Quercetin treatment of the SW480 human colon cancer cells was found to result in the decreased expression of three proteins and the increased expression of one protein. The identified proteins with decreased expression were type II cytoskeletal 8 keratin and NADH dehydrogenase Fe-S protein 3. The other protein with decreased expression was not identified. The protein with increased expression belonged to the annexin family. CONCLUSION: Several proteins were determined to have altered expression following treatment with quercetin. Such changes in the levels of these particular proteins could underlie the chemo-protective action of quercetin towards colon cancer

    A new pathway of glucocorticoid action for asthma treatment through the regulation of PTEN expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>"Phosphatase and tensin homolog deleted on chromosome 10" (PTEN) is mostly considered to be a cancer-related gene, and has been suggested to be a new pathway of pathogenesis of asthma. The purpose of this study was to investigate the effects of the glucocorticoid, dexamethasone, on PTEN regulation.</p> <p>Methods</p> <p>OVA-challenged mice were used as an asthma model to investigate the effect of dexamethasone on PTEN regulation. Immunohistochemistry was used to detect expression levels of PTEN protein in lung tissues. The human A549 cell line was used to explore the possible mechanism of action of dexamethasone on human PTEN regulation <it>in vitro</it>. A luciferase reporter construct under the control of PTEN promoter was used to confirm transcriptional regulation in response to dexamethasone.</p> <p>Results</p> <p>PTEN protein was found to be expressed at low levels in lung tissues in asthmatic mice; but the expression was restored after treatment with dexamethasone. In A549 cells, human PTEN was up-regulated by dexamethasone treatment. The promoter-reporter construct confirmed that dexamethasone could regulate human PTEN transcription. Treatment with the histone deacetylase inhibitor, TSA, could increase PTEN expression in A549 cells, while inhibition of histone acetylase (HAT) by anacardic acid attenuated dexamethasone-induced PTEN expression.</p> <p>Conclusions</p> <p>Based on the data a new mechanism is proposed where glucocorticoids treat asthma partly through up-regulation of PTEN expression. The <it>in vitro </it>studies also suggest that the PTEN pathway may be involved in human asthma.</p

    The genetic epidemiology of joint shape and the development of osteoarthritis

    Get PDF
    Congruent, low-friction relative movement between the articulating elements of a synovial joint is an essential pre-requisite for sustained, efficient, function. Where disorders of joint formation or maintenance exist, mechanical overloading and osteoarthritis (OA) follow. The heritable component of OA accounts for ~ 50% of susceptible risk. Although almost 100 genetic risk loci for OA have now been identified, and the epidemiological relationship between joint development, joint shape and osteoarthritis is well established, we still have only a limited understanding of the contribution that genetic variation makes to joint shape and how this modulates OA risk. In this article, a brief overview of synovial joint development and its genetic regulation is followed by a review of current knowledge on the genetic epidemiology of established joint shape disorders and common shape variation. A summary of current genetic epidemiology of OA is also given, together with current evidence on the genetic overlap between shape variation and OA. Finally, the established genetic risk loci for both joint shape and osteoarthritis are discussed

    Evaluation of a new community-based curriculum in disaster medicine for undergraduates

    Full text link
    BACKGROUND: Nowadays, many medical schools include training in disaster medicine in undergraduate studies. This study evaluated the efficacy of a disaster medicine curriculum recently designed for Saudi Arabian medical students. METHODS: Participants were 15 male and 14 female students in their fourth, fifth or sixth year at Jazan University Medical School, Saudi Arabia. The course was held at the Research Center in Emergency and Disaster Medicine and Computer Sciences Applied to the Medical Practice in Novara, Italy. RESULTS: The overall mean score on a test given before the course was 41.0 % and it increased to 67.7 % on the post-test (Wilcoxon test for paired samples: z = 4.71, p < 0.0001). There were no significant differences between the mean scores of males and females, or between students in their fourth, fifth or sixth year of medical school. CONCLUSIONS: These results show that this curriculum is effective for teaching disaster medicine to undergraduate medical students. Adoption of this course would help to increase the human resources available for dealing with disaster situations

    Stable free radical scavenging and antiperoxidative properties of resveratrol compared in vitro with some other bioflavonoids

    No full text
    416-422Stable free radical scavenging and antiperoxidative activities of resveratrol, a component of grapes and red wine, were evaluated and compared with some other known bioflavonoids (quercetin, catechin, kaempferol, myricetin, fisetin, ellagic acid and naringenin) widely present in the plant kingdom. Free radical scavenging activity was measured in an in vitro chemical system (DPPH assay), while for antiperoxidative activity, biological system comprising of hepatic and pulmonary homogenates was employed. Antiradical activity assay showed quercetin and myricetin to be stronger antiradical agents than resveratrol. Structure-activity study revealed that O-dihydroxy group on ring B of flavonoid plays a crucial role. A double bond at 2-3 position conjugated with a 4-oxo function and hydroxy groups at positions 3 and 5 also contribute towards antiradical activity of flavonoids. Resveratrol exhibited stronger antiradical activity than kaempferol and naringenin and was also more efficient than ⍺-tocopherol, a known strong endogenous non-flavonoid antioxidant, used for comparison. In vitro antiperoxidative assay showed fisetin as the strongest and kaempferol as the weakest antioxidant. Resveratrol was found to be stronger antioxidant than catechin, myricetin, kaempferol and naringenin, but was weaker than quercetin, fisetin and ⍺-tocopherol. Antiradical and antiperoxidative activities of resveratrol may explain its beneficial effects in disease states. Assays exhibited no direct correlation between antiradical and antiperoxidative activities of the phenolics

    Sinusoidal electromagnetic field of 50Hz helps in retaining calcium in tibias of aged rats

    No full text
    201-204<span style="font-size:14.0pt;line-height: 115%;font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:hi"="" lang="EN-IN">Effect of 50Hz sinusoidal electromagnetic field (SEMF) on normal bone physiology was evaluated in young and old female and male Wistar rats. Ex posure to SEMF resulted in increased 45Ca retention in tibias of aged animals only. Levels of serum calcium in young female and male rats were significantly less than in respective aged rats. These were further decreased after 4 weeks of SEM F exposure. SEM F exposure did not change the serum calcium levels in aged rats, and inorganic  phosphates in young and aged animals. Similarly, the levels of tartrate resistant acid and alkaline phosphatase were significantly decreased in young rats, whereas the levels remained unchanged in aged rats or either sex. The results revealed that SEM F of 1mT can prevent bone calcium loss due to aging in animals.</span
    corecore