468 research outputs found

    How structure of production determines the demand for human capital

    Get PDF
    On the issue of women's status, the objectives of this paper are twofold. First, it attempts to make precise some of the claims and allegations regarding the existence of bias against females in the allocation of resources within the household. The idea is to formulate these questions explicitly, so that it is possible to identify whether and to what degree there is evidence of this bias. Second, it identifies causes of this bias with the objective of isolating key factors that can be used for policy. In contrast to earlier studies that attemptto account for male-female differences in human capital, the authors do not assume any discrimination against females either at home (in the parent's utility function) or in the market (in the returns to human capital). It is assumed, however, that women have a comparative advantage in working in some sectors of the economy. Thus, increases in the shares of these sectors will increase the demand for female human capital. This explicit attention to factors that can be used as policy instruments -- and the relative neglect of factors reflecting gender bias in tastes -- is the point of departure from earlier literature. This paper develops the theory, tests the hypotheses, and concludes with a discussion of the policy implications.Health Monitoring&Evaluation,Economic Theory&Research,Agricultural Knowledge&Information Systems,Housing&Human Habitats,Environmental Economics&Policies

    Robust Modeling and Predictions of Greenhouse Gas Fluxes from Forest and Wetland Ecosystems

    Get PDF
    The land-atmospheric exchanges of carbon dioxide (CO2) and methane (CH4) are major drivers of global warming and climatic changes. The greenhouse gas (GHG) fluxes indicate the dynamics and potential storage of carbon in terrestrial and wetland ecosystems. Appropriate modeling and prediction tools can provide a quantitative understanding and valuable insights into the ecosystem carbon dynamics, while aiding the development of engineering and management strategies to limit emissions of GHGs and enhance carbon sequestration. This dissertation focuses on the development of data-analytics tools and engineering models by employing a range of empirical and semi-mechanistic approaches to robustly predict ecosystem GHG fluxes at variable scales. Scaling-based empirical models were developed by using an extended stochastic harmonic analysis algorithm to achieve spatiotemporally robust predictions of the diurnal cycles of net ecosystem exchange (NEE). A single set of model parameters representing different days/sites successfully estimated the diurnal NEE cycles for various ecosystems. A systematic data-analytics framework was then developed to determine the mechanistic, relative linkages of various climatic and environmental drivers with the GHG fluxes. The analytics, involving big data for diverse ecosystems of the AmeriFLUX network, revealed robust latent patterns: a strong control of radiation-energy variables, a moderate control of temperature-hydrology variables, and a relatively weak control of aerodynamic variables on the terrestrial CO2 fluxes. The data-analytics framework was then employed to determine the relative controls of different climatic, biogeochemical and ecological drivers on CO2 and CH4 fluxes from coastal wetlands. The knowledge was leveraged to develop nonlinear, predictive models of GHG fluxes using a small set of environmental variables. The models were presented in an Excel spreadsheet as an ecological engineering tool to estimate and predict the net ecosystem carbon balance of the wetland ecosystems. The research also investigated the emergent biogeochemical-ecological similitude and scaling laws of wetland GHG fluxes by employing dimensional analysis from fluid mechanics. Two environmental regimes were found to govern the wetland GHG fluxes. The discovered similitude and scaling laws can guide the development of data-based mechanistic models to robustly predict wetland GHG fluxes under a changing climate and environment

    A new scheme to realize crosstalk-free permutations in optical MINs with vertical stacking

    Get PDF
    ©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Vertical stacking is an alternative for constructing nonblocking multistage interconnection networks (MINs). In this paper, we study the crosstalk-free permutation in rearrangeable, self-routing Banyan-type optical MINs built on vertical stacking and propose a new scheme for realizing permutations in this class of optical MINs crosstalk-free. The basic idea of the new scheme is to classify permutations into permutation classes such that all permutations in one class share the same crosstalk-free decomposition pattern. By running the Euler-Split based crosstalk-free decomposition only once for a permutation class and applying the obtained crosstalk-free decomposition pattern to all permutations in the class, crosstalk-free decomposition of permutations can be realized in a more efficient way. We show that the number of permutations in a permutation class is huge, enabling the average time complexity of the new scheme to realize a crosstalk-free permutation in an N by N network to be reduced to O(N) from previously O(NlogN).Xiaohong Jiang, Hong Shen, Md. Mamun-ur-Rashid Khandker, Susumu Horiguch

    Blocking behaviors of crosstalk-free optical Banyan networks on vertical stacking

    Get PDF
    Banyan networks are attractive for constructing directional coupler (DC)-based optical switching networks for their small depth and self-routing capability. Crosstalk between optical signals passing through the same DC is an intrinsic drawback in DC-based optical networks. Vertical stacking of multiple copies of an optical banyan network is a novel scheme for building nonblocking (crosstalk-free) optical switching networks. The resulting network, namely vertically stacked optical banyan (VSOB) network, preserves all the properties of the banyan network, but increases the hardware cost significantly. Though much work has been done for determining the minimum number of stacked copies (planes) required for a nonblocking VSOB network, little is known on analyzing the blocking probabilities of VSOB networks that do not meet the nonblocking condition (i.e., with fewer stacked copies than required by the nonblocking condition). In this paper, we analyze the blocking probabilities of VSOB networks and develop their upper and lower bounds with respect to the number of planes in the networks. These bounds depict accurately the overall blocking behaviors of VSOB networks and agree with the conditions of strictly nonblocking and rearrangeably nonblocking VSOB networks respectively. Extensive simulation on a network simulator with both random routing and packing strategy has shown that the blocking probabilities of both strategies fall nicely within our bounds, and the blocking probability of packing strategy actually matches the lower bound. The proposed bounds are significant because they reveal the inherent relationships between blocking probability and network hardware cost in terms of the number of planes, and provide network developers a quantitative guidance to trade blocking probability for hardware cost. In particular, our bounds provide network designers an effective tool to estimate the minimum and maximum blocking probabilities of VSOB networks in which different routing strategies may be applied. An interesting conclusion drawn from our work that has practical applications is that the hardware cost of a VSOB network can be reduced dramatically if a predictable and almost negligible nonzero blocking probability is allowed.Xiaohong Jiang; Hong Shen; Khandker, Md.M.-ur-R.; Horiguchi, S

    PSG10: RESTENOSIS AND MEDICAL COSTS FOLLOWING PERCUTANEOUS TRANSLUMINAL CORONARY ANGIOPLASTY (PTCA) WITH AND WITHOUT STENT

    Get PDF

    A novel index-based decision support toolkit for safe reopening following a generalized lockdown in low and middle-income countries

    Get PDF
    While the effectiveness of lockdowns to reduce Coronavirus Disease-2019 (COVID-19) transmission is well established, uncertainties remain on the lifting principles of these restrictive interventions. World Health Organization recommends case positive rate of 5% or lower as a threshold for safe reopening. However, inadequate testing capacity limits the applicability of this recommendation, especially in the low-income and middle-income countries (LMICs). To develop a practical reopening strategy for LMICs, in this study, we first identify the optimal timing of safe reopening by exploring accessible epidemiological data of 24 countries during the initial COVID-19 surge. We find that a safe opening can occur two weeks after the crossover of daily infection and recovery rates while maintaining a negative trend in daily new cases. Epidemiologic SIRM model-based example simulation supports our findings. Finally, we develop an easily interpretable large-scale reopening (LSR) index, which is an evidence-based toolkit—to guide/inform reopening decision for LMICs

    A novel index-based decision support toolkit for safe reopening following a generalized lockdown in low and middle-income countries

    Get PDF
    While the effectiveness of lockdowns to reduce Coronavirus Disease-2019 (COVID-19) transmission is well established, uncertainties remain on the lifting principles of these restrictive interventions. World Health Organization recommends case positive rate of 5% or lower as a threshold for safe reopening. However, inadequate testing capacity limits the applicability of this recommendation, especially in the low-income and middle-income countries (LMICs). To develop a practical reopening strategy for LMICs, in this study, we first identify the optimal timing of safe reopening by exploring accessible epidemiological data of 24 countries during the initial COVID-19 surge. We find that a safe opening can occur two weeks after the crossover of daily infection and recovery rates while maintaining a negative trend in daily new cases. Epidemiologic SIRM model-based example simulation supports our findings. Finally, we develop an easily interpretable large-scale reopening (LSR) index, which is an evidence-based toolkit-to guide/inform reopening decision for LMICs

    Environmental controls, emergent scaling, and predictions of greenhouse gas (GHG) fluxes in coastal salt marshes

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 123 (2018): 2234-2256, doi:10.1029/2018JG004556.Coastal salt marshes play an important role in mitigating global warming by removing atmospheric carbon at a high rate. We investigated the environmental controls and emergent scaling of major greenhouse gas (GHG) fluxes such as carbon dioxide (CO2) and methane (CH4) in coastal salt marshes by conducting data analytics and empirical modeling. The underlying hypothesis is that the salt marsh GHG fluxes follow emergent scaling relationships with their environmental drivers, leading to parsimonious predictive models. CO2 and CH4 fluxes, photosynthetically active radiation (PAR), air and soil temperatures, well water level, soil moisture, and porewater pH and salinity were measured during May–October 2013 from four marshes in Waquoit Bay and adjacent estuaries, MA, USA. The salt marshes exhibited high CO2 uptake and low CH4 emission, which did not significantly vary with the nitrogen loading gradient (5–126 kg · ha−1 · year−1) among the salt marshes. Soil temperature was the strongest driver of both fluxes, representing 2 and 4–5 times higher influence than PAR and salinity, respectively. Well water level, soil moisture, and pH did not have a predictive control on the GHG fluxes, although both fluxes were significantly higher during high tides than low tides. The results were leveraged to develop emergent power law‐based parsimonious scaling models to accurately predict the salt marsh GHG fluxes from PAR, soil temperature, and salinity (Nash‐Sutcliffe Efficiency = 0.80–0.91). The scaling models are available as a user‐friendly Excel spreadsheet named Coastal Wetland GHG Model to explore scenarios of GHG fluxes in tidal marshes under a changing climate and environment.National Oceanic and Atmospheric Administration Grant Numbers: NA09NOS4190153, NA14NOS4190145; National Science Foundation (NSF) Grant Numbers: 1705941, 1561941/1336911; USGS LandCarbon Program; NOAA National Estuarine Research Reserve Science Collaborative Grant Number: NA09NOS4190153 and NA14NOS41901452019-01-2

    Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eagle, M. J., Kroeger, K. D., Spivak, A. C., Wang, F., Tang, J., Abdul-Aziz, O. I., Ishtiaq, K. S., O’Keefe Suttles, J., & Mann, A. G. Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands. The Science of the Total Environment, 848, (2022): 157682, https://doi.org/10.1016/j.scitotenv.2022.157682.Coastal wetlands provide key ecosystem services, including substantial long-term storage of atmospheric CO2 in soil organic carbon pools. This accumulation of soil organic matter is a vital component of elevation gain in coastal wetlands responding to sea-level rise. Anthropogenic activities that alter coastal wetland function through disruption of tidal exchange and wetland water levels are ubiquitous. This study assesses soil vertical accretion and organic carbon accretion across five coastal wetlands that experienced over a century of impounded hydrology, followed by restoration of tidal exchange 5 to 14 years prior to sampling. Nearby marshes that never experienced tidal impoundment served as controls with natural hydrology to assess the impact of impoundment and restoration. Dated soil cores indicate that elevation gain and carbon storage were suppressed 30–70 % during impoundment, accounting for the majority of elevation deficit between impacted and natural sites. Only one site had substantial subsidence, likely due to oxidation of soil organic matter. Vertical and carbon accretion gains were achieved at all restored sites, with carbon burial increasing from 96 ± 33 to 197 ± 64 g C m−2 y−1. The site with subsidence was able to accrete at double the rate (13 ± 5.6 mm y−1) of the natural complement, due predominantly to organic matter accumulation rather than mineral deposition, indicating these ecosystems are capable of large dynamic responses to restoration when conditions are optimized for vegetation growth. Hydrologic restoration enhanced elevation resilience and climate benefits of these coastal wetlands.This project was supported by the U.S. Geological Survey Coastal and Marine Hazards and Resources Program and the USGS Land Change Science Program's LandCarbon program, NOAA National Estuarine Research Reserve Science Collaborative NA14NOS4190145, and MIT Sea Grant 2015-R/RC-141. Contributions of Abdul-Aziz were also supported by NSF CBET Environmental Sustainability Award No. 1705941. Our stakeholder partners, including the Cape Cod National Seashore, Waquoit Bay National Estuarine Research Reserve, and the Bringing Wetlands to Market project team, and Towns and Conservation Commissions, including Eastham, Barnstable, Brewster, Yarmouth, Denis, Sandwich and Orleans, were instrumental in providing research support and site access

    THE COST STRUCTURE OF MICROFINANCE INSTITUTIONS IN EASTERN EUROPE AND CENTRAL ASIA

    Full text link
    Microfinance institutions are important, particularly in developing countries, because they expand the frontier of financial intermediation by providing loans to those traditionally excluded from formal financial markets. This paper presents the first systematic statistical examination of the performance of MFIs operating in Eastern Europe and Central Asia. A cost function is estimated for MFIs in the region from 1999-2004. First, the presence of subsidies is found to be associated with higher MFI costs. When output is measured as the number of loans made, we find that MFIs become more efficient over time and that MFIs involved in the provision of group loans and loans to women have lower costs. However, when output is measured as volume of loans rather than their number, this last finding is reversed. This may be due to the fact that such loans are smaller in size; thus for a given volume more loans must be made.http://deepblue.lib.umich.edu/bitstream/2027.42/40195/3/wp809.pd
    corecore