
A New Scheme to Realize Crosstalk-free Permutations in Optical MINs with
Vertical Stacking 1

Xiaohong Jiang, Hong Shen, Md. Mamun-ur-Rashid Khandker and Susumu Horiguchi
Graduate School of Information Science,

Japan Advanced Institute of Science and Technology,
JAIST, Tatsunokuchi, ISHIKAWA 923-1292, JAPAN

Email: { jiang, shen, khandker,hori }@jaist.ac.jp

1 This work is support by Telecommunications Advancement Organization of Japan.

Abstract

Vertical stacking is an alternative for constructing
nonblocking multistage interconnection networks (MINs).
In this paper, we study the crosstalk-free permutation in
rearrangeable, self-routing Banyan-type optical MINs
built on vertical stacking and propose a new scheme for
realizing permutations in this class of optical MINs
crosstalk-free. The basic idea of the new scheme is to
classify permutations into permutation classes such that
all permutations in one class share the same crosstalk-
free decomposition pattern. By running the Euler-Split
based crosstalk-free decomposition only once for a
permutation class and applying the obtained crosstalk-
free decomposition pattern to all permutations in the
class, crosstalk-free decomposition of permutations can
be realized in a more efficient way. We show that the
number of permutations in a permutation class is huge,
enabling the average time complexity of the new scheme
to realize a crosstalk-free permutation in an N by N
network to be reduced to O(N) from previously
O(NlogN).

1. Introduction

A basic element of optical switching networks is a
directional-coupler (DC) with similar function of 2×2
switching element (SE). DC-based optical switching
networks can switch signals at the very high speed, and
such networks are also capable of switching signals with
multiple wavelengths. Crosstalk is a major shortcoming
of DC, which occurs between two signals carried in the
two waveguides of the coupler [1][2]. By ensuring that
only one signal passes through a switch at a time, the
first order crosstalk can be eliminated and this provides a
cost-effective solution to the crosstalk problem. Due to
the stringent bit-error rate requirement of optical
transmission facilities, elimination of crosstalk in a DC-
based switching system has been widely studied
[1,7,10,11,12,13, 14, 15].

Banyan [3] or its topologically equivalent (e.g.
baseline, omega) networks [5, 8] are a class of attractive
switching networks because they are fast in switch setting
(self-routing) and also have a small number of switches
between an input-output pair. These characteristics make
Banyan-type network an ideal network structure for
constructing DC-based optical switching networks.
Banyan-type networks have a unique path between an
input-output pair, and this makes them blocking
networks. Vertical stacking [6] is a novel scheme for
constructing nonblocking network as illustrated in Fig.1.

The rearrangeable nonblocking optical networks are
attractive because the cost and signal degradation of a
rearrangeable nonblocking optical network are much
lower than its strictly nonblocking and wide-sense
nonblocking counterparts. Based on the vertical-stacking
scheme, the condition for a banyan-type network to be
rearrangeable nonblocking and free of crosstalk in SEs
has been determined in [9,12]. In this paper, we look into
the crosstalk-free permutation in rearrangeable
nonblocking Banyan-type optical MINs built on the
vertical stacking technique. A scheme was proposed in
[17] to realize crosstalk-free permutation in this type of
rearrangeable nonblocking optical MINs. The basic idea
of this scheme is to first decomposed a permutation into
multiple crosstalk-free partial permutations which

O u t p u ts

B a n y a n n e t w o r k

P l a n e 1

B a n y a n n e t w o r k

P l a n e 2

B a n y a n n e t w o r k

P l a n e m

:

.

In p u t s

:

.
:

.

O u t p u ts

B a n y a n n e t w o r k

P l a n e 1

B a n y a n n e t w o r k

P l a n e 2

B a n y a n n e t w o r k

P l a n e m

:

.

In p u t s

:

.
:

.

Fig.1 Creating non-blocking network
based on the vertical stacking scheme

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

requires O(NlogN) time, and then to realize them
crosstalk-free in different planes (stacked copies) of the
MIN simultaneously. In this paper, we present a new
scheme for realizing permutations in this class of
vertically stacked optical MINs crosstalk-free. Since
inherent similarities among permutations in the sense of
crosstalk-free decomposition are fully utilized in the new
scheme, crosstalk-free permutation can be realized with
an average time complexity of O(N).

2. Rearrangeable noblocking networks under
crosstalk-free constraint

Ideally, we are interested in designing a network
without any crosstalk. For convenience, we use the
notation B(N,p) to refer to an N×N MIN that consists of
p vertically stacked copies of Banyan-type networks. We
have the following result concerning the rearrangeable
nonblocking conditions for a B(N,p) network [9,12].
Theorem 1: Under the constraint of crosstalk-free, a
B(N,p) network is rearrangeable nonblocking if the
following is true

() 212 +≥ np (1)
Hereafter, we will use RB(N) to refer to the rearrangeable
nonblocking network B(N,p) which consists of

() 212 +n copies (planes) of Banyan-type network. Note that
under the constraint of crosstalk-free, the complexity of a
rearrangeable Banyan-type optical MIN is much lower
than its strictly nonblocking counterpart [10] and its
wide-sense nonblocking counterpart [16].

3. Permutation and Crosstalk-Free Partial
Permutation (CFPP)

A permutation is a full one-to-one mapping between
the network inputs and outputs. For an N × N Banyan-
type network, suppose input xi is mapped to output yi ,
where xi = i and yi ∈ {0,1,…,N-1} for i = 0,1,…, N-1. We
denote this permutation as:










−

−

110

110

,,,

,,,

N

N

yyy

xxx

L

L (2)

In addition, we call a one-to-one mapping between N1
inputs and N1 outputs in the network (N1 < N) a partial
permutation.
Definition 1 A partial permutation is called Crosstalk
Free Partial Permutation (CFPP) to an optical MIN if the
partial permutation is crosstalk-free realizable to the
optical MIN.
Example 1 The decomposition of a permutation into
CFPPs.


































⇒








101

139

412

43

147

1511

38

60

59

128

130

52

156

1410

112

71

1415

1514

105

1312

76

1110

19

98

113

76

134

54

120

32

28

10

ooo

(3)

4. Crosstalk-free permutation in RB(N)
network

The above result indicates that all permutations can be
realized crosstalk-free in a RB(N). In [17], the following
Lemma concerning the crosstalk-free property of an
optical MIN was presented.

Lemma 1 For an N × N Banyan-type network and an
integer i (0≤ i ≤(n+1)/ 2 -1), define sets:

{ }
122122

][,,, −+⋅+⋅⋅= iiii jjj

i
j uuuI L

, { }
122122

][,,,
−+⋅+⋅⋅

= iiii jjj

i
j vvvO L

, 10 12
−≤≤ +i

Nj

where u0, u1,…, uN/2-1 are the N/2 inputs switches and v0,
v1 ,…,vN/2-1 are the N/2 outputs switches. For the two
inputs (outputs) of any two one-pair mappings in the
network, if their corresponding two input (output)
switches belong to two different input (output) sets
defined above, the two mappings will be crosstalk-free in
the first (last) i+1 stages of the network.

The following algorithm was also developed in [17] to
actually decompose a permutation of set {0,1,…, N-1}
into () 212 +n CFPPs for a RB(N) network.

Algorithm 1: CFPP decomposition algorithm:
Initiate: i = 0 and take the permutation as the 0-level
partial permutation.
Step 1: If i = (n+1)/ 2, exit.
Step 2: For each i-level partial permutation, do steps 3-4.
Step 3: Construct a bipartite graph G = (V1,V2 ; E) for the
i-level partial permutation. The vertex sets of G are
defined by:







= −+

]1[
1

]1[
1

]1[
01

12

,,,
i
NAAAV L

,






= −+

]2[
1

]2[
1

]2[
02

12

,,,
i
NAAAV L

Here { }
122122

]1[,,,
−+⋅+⋅⋅

= iiii jjjj uuuA L

, { }
122122

]2[,,,
−+⋅+⋅⋅

= iiii jjjj vvvA L

for 10 12
−≤≤ +i

Nj , and u0, u1 ,…, uN/2-1 are the N/2 inputs

switches and v0, v1 ,…,vN/2-1 are the N/2 outputs switches.
The edge set E is defined as: for any one-pair mapping










i

i

y

x in the i-level partial permutation, if the input switch

corresponding to
ix belongs to]1[

1j
A and the outputs

switch corresponding to
iy belongs to]2[

2j
A , then there is

an edge between vertex]1[

1j
A and vertex]2[

2j
A in E.

Step 4: Find the Euler tour.
Since any vertex in each connected component of G

has degree 2, we know from graph theory [4] that there
exists an Euler tour which traverses each edge of the
component exactly once. Then for each connected
component of G, start from any vertex in V1 in it, traverse
through an unvisited edge to the neighboring vertex V2,
back and forth until return to the starting vertex. During
the traversing, a visited edge is will be placed into set E1
if the traverse direction on this edge is from V1 to V2; and
placed into set E2 if the direction is opposite. It is easy to
see that the set of all edges in E1 is a perfect matching of
the bipartite graph G, so is the set of edges in E2.
Step 5: Take all one-pair mappings corresponding to the
edges in E1, to form one (i+1)-level partial permutation
corresponding to the i-level partial permutation; let the
remaining one-pair mappings, corresponding to the
edges in E2, form another (i+1)-level partial permutation
corresponding to the i-level partial permutation.
Step 6: i ⇐ i +1. Go to Step 1.

It is clear that after running the decomposition
algorithm for a permutation in an N × N Banyan-type
MIN, the permutation will be decomposed into

() 212 +n partial permutations that eliminate the crosstalk in
all stages of the network as guaranteed by Lemma 1. By

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

realizing each of these CFPPs in a single plane of a
RB(N) network, the full permutation can be realized
crosstalk-free in a single pass based on the parallel
message transmission. The Steps 2-5 take O(N) steps and
these steps repeat O(log2N) times, the time complexity of
the decomposition algorithm is therefore O(Nlog2N).
Since the RB(N) network consists of multi-copies of
Banyan-type networks which are self-routing, so the
routing complexity is O(log2N).

It is easy to verify that if we apply the above Algorithm
to the permutation (3), the CFPPs obtained are just the
four CFPPs given in example 1. The results in the
Algorithm 1 show that any permutation of N-element set
{0,1,…, N-1} can be decomposed into N (N2)
CFPPs if log N is even (odd) and each of these CFPPs
consists of N (2N) mapping pairs. To avoid
confusion, we will refer to this special kind of CFPPs of a
permutation as the Specified Crosstalk-Free Partial
Permutation (SCFPPs) of the permutation. It is easy to
say that the CFPPs of a permutation obtained by running
Algorithm 1 over the permutation are just the SCFPPs of
the permutation.

5. A new scheme for crosstalk-free
decomposition

As discussed in Section 4, the overall time complexity
to realize a permutation crosstalk-free in a RB(N)
network is dominated by the time complexity of the
CFPP decomposition algorithm, which is O(Nlog2N).
Thus, the performance of high speed optical MIN can be
enhanced significantly if the time complexity of
decomposition algorithm can be reduced. In this section,
we present a new scheme for crosstalk-free
decomposition. The basic idea of the scheme is to classify
permutations into permutation classes such that all
permutations in one class share the same crosstalk-free
decomposition pattern. By running the Euler-Split based
algorithm 1 only once for a permutation class and
applying the obtained crosstalk-free decomposition
patterns to all permutations in the class, crosstalk-free
decomposition of permutations can be realized in a more
efficient way.

5.1 Permutation pattern and permutation class

To explore the class of permutations that have similar
crosstalk-free decompositions, we start with the following
definition based on the crosstalk-free condition of an
entire Banyan-type network as described in Lemma 1.
Definition 2: For a permutation of form (2), we set i

= ()  121 −+n . Then a specified undirected bipartite graph
G* = (V1,V2 ; E) can be constructed for the permutation as
that of step 3 in Algorithm 1. We define the topology
pattern (ignoring the details of mapping pairs) of the
bipartite graph G* = (V1,V2; E) to be the permutation
pattern of the permutation. If we let the vertices of V1 and
the vertices of V2 correspond to the rows and the columns
of a matrix, respectively, then the permutation pattern
can also be expressed as a matrix

1212

)(
++ ×=

i
N

i
NjkPP aM with

its entry ajk being the number of edge(s) from j-th vertex
in V1 to k-th vertex in V2. We define the matrix MPP as
the permutation pattern matrix (PPM) of the given
permutation. Furthermore, we can also construct a
matrix

1212

)(
++ ×=

i
N

i
NjkDPP bM with its entry bjk being the set

of the mapping pair(s) corresponding to the edge(s) from
j-th vertex in V1 to k-th vertex in V2. We call the
matrix

1212

)(
++ ×=

i
N

i
NjkDPP bM the detailed permutation

pattern matrix (DPPM).
Example 2. The permutation pattern, PPM and DPPM of
permutation (3) in Example 1.
According to the definition, the permutation pattern of
permutation (3) is illustrated in Figure 2.

The corresponding PPM of the permutation is:



















=

2110

0121

1111

1102

PPM

If we number mapping pairs as










=

j

j

j y

x
e for 0≤ j ≤ 15,

the DPPM of the permutation is thus:
{ } { } { } { }

{ } { } { } { }
{ } { } { } { }
{ } { } { } { } 


















−
−

−

=

15141312

811109

5746

3021

,

,

,

eeee

eeee

eeee

eeee

M DPP

Here {-} means a null set.
We are now in the position to introduce the definition

of permutation class.
Definition 3: We define the set of all the permutations
corresponding to the same PPM (permutation pattern) to
be a permutation class.

It is should be noted that all permutations in a class
share a common PPM, but each permutation has a
distinct DPPM. About the number of permutations in a
permutation class, we have the following result:
Theorem 2: In a permutation class on {0,1,…, N-1},
there are at least () N

N ! permutations if log2N is even,

and at least () 2!2
N

N permutations if log2N is odd.
Proof: Omitted.

5.2 CFPP matrices of a permutation

As indicated in the decomposition Algorithm 1 and
Definition 2, the permutation pattern of a permutation of

{ }10
[1]
0 ,A uu=

{ }32
[1]
1 ,A uu=

{ }54
[1]
2 ,A uu=

{ }76
[1]
3 ,A uu=

{ }10
[2]
0 ,A vv=

{ }32
[2]
1 ,A vv=

{ }54
[2]
2 ,A vv=

{ }76
[2]
3 ,A vv=

{ }10
[1]
0 ,A uu=

{ }32
[1]
1 ,A uu=

{ }54
[1]
2 ,A uu=

{ }76
[1]
3 ,A uu=

{ }10
[2]
0 ,A vv=

{ }32
[2]
1 ,A vv=

{ }54
[2]
2 ,A vv=

{ }76
[2]
3 ,A vv=

Fig.2 The permutation pattern of permutation (3)

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

N-element set {0,1,…, N-1} can be decomposed into
() 212 +n disjoint sub-patterns, and each of these sub-

patterns is a perfect match of the specified bipartite graph
G* = (V1,V2 ; E) of the permutation and corresponds to a
SCFPP of the permutation. Since a permutation pattern is
completely specified by its permutation pattern matrix
(PPM) defined in Definition 2, a sub-pattern discussed
above will also be completely specified by a matrix
defined in the same way as that of PPM. We introduce
the following definition to characterize the matrix
defined for a sub-pattern.
Definition 4: We define the matrices, which are defined
by the () 212 +n disjoint sub-patterns decomposed from the
permutation pattern of a permutation on {0,1,…, N-1} by
using Algorithm 1, to be the CFPP matrices of the
permutation.
We have the following results regarding the CFPP
matrices of a permutation:
Lemma 2: For any permutation, each of its CFPP
matrices is a permutation matrix, and the sums of its
CFPP matrices are just the PPM of the permutation.
Proof: Omitted.

Since all permutations in one class have a same
permutation pattern and the CFPP matrices of a
permutation are only determined by its permutation
pattern, we have:
Corollary 1: All permutations in one permutation class
have the same set of CFPP matrices.

5.3 Compact CFPP matrix of a permutation class

Since all the permutations in one permutation class
have a same permutation pattern and same set of CFPP
matrices, we can randomly select one permutation from
the class to get the CFPP matrices for the class. After we
run the decomposition algorithm 1 over the selected
permutation, we can get () 212 +n SCFPPs of the
permutation and () 212 +n disjoint sub-patterns of the
specified bipartite graph G* = (V1,V2 ; E) defined for the
permutation, and each of these sub-patterns corresponds
to a SCFPP. Then () 212 +n CFPP matrices of the
permutation can be constructed based on these () 212 +n

SCFPPs, as that of constructing PPM based on the
permutation.

Note that every CFPP matrix of a class is just a
permutation matrix, and a permutation matrix can be
completely specified by the positions of unit entries in the
matrix. So we actually only need to calculate and keep
the positions of unit entries in the CFPP matrices of a
class, such that the () 212 +n CFPP matrices of a
permutation can be expressed in a more compact way.
Definition 5: For a permutation class and its CFPP
matrices, we construct a matrix such that each row of the
matrix contains the positions of unit entries in a CFPP
matrix. We define the matrix as the compact CFPP
matrix of the class.

We present here an algorithm for getting the compact
CFPP matrix of a class.

Algorithm 2 Getting compact CFPP matrix for a class
Step 1:For a permutation class of N-element set {0,1,…,
N-1}, we set i =(n+1)/ 2 -1and take a permutation from

the class. Express the permutation in form of
()110 ,,, −Neee L

with










=

j

j

j y

x
e

being the mapping pair.

Step 2:Run the decomposition algorithm 1 over the
permutation, and summarize the SCFPPs obtained as a
matrix:

























=

−+
+

×




 −+

+
×





 −+

−
+

×+
++

−
+

1
1

12
112

12
112

1
12

21
1212

1
12

10

1

N

i

Ni
i

Ni

i

N

i

N

i

N

i

N

ddd

ddd

ddd

eee

eee

eee

M

L

LLLL

L

L

Here {d0,d1,…,dN-1 }={0,1,…,N-1}, and each row of the
matrix corresponds to a SCFPP of the original
permutation..
Step3: Get the following matrix based on matrix M1.
































































































































































































































































































































































































=

++++++

++++++

++++++

−−
+

+
−++

+
−+

+
−+

+
−+

−+−+++++++

−+−+

111111

111111

111111

2

2
,

22
,

22
,

2

2
,

22
,

22
,

2

2
,

22
,

22
,

2

11
1

12
)112(1

12
)112(

12
)112(

12
)112(

112211221121121212

1121121100

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

i

d

N

y

N

x

N

y

N

x

N

y

N

x

N

y

N

x

N

y

N

x

N

y

N

x

N

y

N

x

N

y

N

x

N

y

N

x

M

NNi

Ni
i

Ni
i

Ni
i

Ni

iNiNiNiNiNiN

iNiN

L

LLLL

L

L

Note that M2 is converted from M1 by replacing each
mapping pair











=

j

j

j y

x
e in M1 with the number pair






























++ 11 2

,
2 i

j

i

j

N

y

N

x . The number pairs in each row of

M2 are just the positions of the units in the CFPP matrix
corresponding to the SCFPP in the same row of M1.
Thus, M2 is just the compact CFPP matrix of the class.

Example 3 Compute the compact CFPP matrix for the
permutation class containing permutation (3).

From example 1 we know that after we run the
decomposition algorithm 1 over permutation (3), the four
SCFPPs obtained can be summarized as the following
matrix:



















=

13943

151160

12852

141071

1

eeee

eeee

eeee

eeee

M

Here we number mapping pair as









−
=

j
e j

for 0≤ j ≤ 15.

The corresponding compact CFPP matrix will be:

() () () ()
() () () ()
() () () ()
() () () ()


















=



































































































































































































































































































































































































=

2,30,21,13,0

3,31,20,12,0

1,32,23,10,0

3,31,22,10,0

4
10

,
4

13
4
1

,
4
9

4
4

,
4
4

4
12

,
4
3

4

14
,

4

15

4

7
,

4

11

4

3
,

4

6

4

8
,

4

0
4

5
,

4

12

4

9
,

4

8

4

13
,

4

5

4

0
,

4

2
4

15
,

4
14

4
6

,
4

10
4

11
,

4
7

4
2

,
4
1

2M

Since all the permutations in one permutation class
have same set of CFPP matrices and thus same compact
CFPP matrix, the compact CFPP matrix obtained for

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

permutation (3) is just the compact CFPP matrix of the
permutation class containing permutation (3).

The results in Theorem 2 indicate that there are a huge
number of permutations in one permutation class, and all
these permutations have the same permutation pattern
and thus same crosstalk-free decompositions. In the
following, we will present an approach for crosstalk-free
decomposition of permutations in one class. The
approach consists of two integrated parts: Getting the
compact CFPP matrix for a class by running the
decomposition algorithm 1 over one of the permutation
in the class and applying the obtained compact CFPP
matrix to any new permutation in the class to get the
crosstalk-free decomposition of the new permutation.

5.4 Crosstalk-free decomposition based on the
compact CFPP matrix of a class

By the definition of detailed permutation pattern
matrix (DPPM) and permutation pattern matrix (PPM),
we know that there is a one-to-one mapping between a
permutation pattern and a PPM, and there is a one-to-one
mapping between a permutation and a DPPM. For a
permutation, its PPM has the same structure as that of its
DPPM except that every entry in PPM is only the number
of mapping pair(s) of the corresponding entry in DPPM.
All the permutations in one class have a common PPM
and permutation pattern, but every permutation in a class
has its distinct DPPM.

For a permutation of N-element set {0,1,…, N-1}, we
can get its () 212 +n SCFPPs based on its () 212 +n CFPP
matrices as follows: For the first CFPP matrix, we take
one mapping pair from each position in the DPPM of the
permutation, where 1 occurs in the same position in this
CFPP matrix, and then get a set of mapping pairs
corresponding to the first CFPP matrix. For the second
CFPP matrix, we take one mapping pair from each
position in the DPPM, where 1 occurs in the same
position in this second CFPP matrix, and then get a set of
mapping pairs corresponding to the second CFPP matrix.
We repeat this until the last CFPP matrix. Its easy to see
that each set of mapping pairs corresponding to each
CFPP matrix is just a SCFPP because of the definitions of
CFPP and SCFPP. Since the DPPM of a permutation is
specified by the PPM of the permutation, and the sums of
all the CFPP matrices of the permutation is just the PPM
of the permutation, the above process works for any
permutation if we obtain its CFPP matrices.

The algorithm 2 indicates that all the CFPP matrices
of a permutation class can be summarized as a single
compact CFPP matrix, so the crosstalk-free
decomposition of the permutation can also be
implemented by using its compact CFPP matrix. We
present here an efficient algorithm to decompose any
permutation of a class into SCFPPs based on the compact
CFPP matrix of the class.

Algorithm 3 Crosstalk-free Decomposition Based on
Compact CFPP Matrix of a Class
Step 1: For a permutation in the permutation class of N-
element set {0,1,…, N-1}, construct the DPPM of the
permutation.
Step 2: For every row in the compact CFPP matrix of the
class, we take the mapping pairs from the DPPM of the

permutation according to the positions indicated in the
row of the compact CFPP matrix, and then get a set of
mapping pairs corresponding to a row of the compact
CFPP matrix. Each set of mapping pairs obtained is just
a SCFPP of the permutation.

The above algorithm is correct by the meanings of
SCFPP and compact CFPP matrices. Since Step 1 takes
O(N) time to construct the DPPM of a permutation, and
Step 2 takes O(N) time to get the SCFPPs of the
permutation based on its DPPM and compact CFPP
matrices, the time complexity of the algorithm is O(N).
Example 4 Crosstalk-free decomposition of the
permutation (4) based on its compact CFPP matrix.










715

1514

1114

1312

45

1110

91

98

63

76

1310

54

08

32

122

10 (4)

Since permutation (4) has the same PPM as that of
permutation (3), they belong to the same class and thus
have the same compact CFPP matrix. From example 3,
we know that the compact CFPP matrix of the
permutation is:

() () () ()
() () () ()
() () () ()
() () () ()


















=

2,30,21,13,0

3,31,20,12,0

1,32,23,10,0

3,31,22,10,0

2M

If we number mapping pairs as









−
=

j
e j

for 0≤ j ≤ 15,

the DPPM of the permutation will be:
{ } { } { } { }

{ } { } { } { }
{ } { } { } { }
{ } { } { } { } 


















−
−

−

=

14121315

911108

5476

1230

,

,

,

eeee

eeee

eeee

eeee

M DPP

After we apply the compact CFPP matrix to the DPPM
according to algorithm 3, we get immediately the four
SCFPPs of the permutation: ()e,e,e,e 121040

, ()e,e,e,e 15953
,

()e,e,e,e 141162
, ()e,e,e,e 13871

, which are:










145

1210

102

40 ,









79

159

130

53 ,









154

1411

38

62 ,









111

138

612

71 .

5.5 Numbering the permutation class

Since a permutation class is identified by its
permutation pattern matrix (PPM), we can number each
permutation class by assigning a distinct number to its
distinct PPM. For a permutation class of N-element set
{0,1,…, N-1}and if log N is even, its PPM will be in the
form

NNjkPP aM ×=)(with Na jk ≤≤0 . Then we can

assign the PPM a distinct number as:

∑ ∑
−

=

−

=

+⋅
⋅

1

0

1

0

N

j

N

k

kNj

jk Na (5)

When log N is odd, the distinct number can be evaluated
in a similar way. Noted that the numbering of a PPM can
be finished in O(N) time.

5.6 The overall decomposition algorithm based on
permutation class

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

The results in Section 5.3 indicate that we only need
to run the decomposition algorithm 1 once for a
permutation class to get the compact CFPP matrix of the
class, then the crosstalk-free decomposition of any
permutation in the class can be implemented in a simple
way as discussed in Section 5.4.

Since a permutation class is identified by its PPM, we
can determine a class for a permutation by checking its
PPM. We are now in the position to give a high-level
description of the overall decomposition algorithm based
on the idea of permutation class.

Algorithm 4 Crosstalk-free Decomposition based on
Permutation Class
Step 1: For a new permutation of N-element set {0,1,…,
N-1}, construct its PPM and calculate its class number.
Step 2: Check the address corresponding to the class
number. Go to Step 3 if the compact CFPP matrix is
available in the address, go to Step 4 otherwise.
Step 3:Use Algorithm 3 in Section 5.4 to get the SCFPPs
of the permutation.
Step 4:Use Steps 2-3 in Algorithm 2 to get the SCFPPs
and compact CFPP matrix of the permutation, and save
the compact CFPP matrix to the address corresponding to
the class number.
Since the Steps 1-3 take O(N) time and Step 4 takes
O(NlogN) time, then we have the following results
regarding time complexity of Algorithm 4.
Theorem 3: To decompose a permutation of N-element
set {0,1,…, N-1} into SCFPPs based on Algorithm 4, the
average time complexity is O(N).
Proof: Omitted.

Since a RB(N) network consists of multi Banyan
networks which are self-routing, so the routing
complexity is O(log2N). Thus, the overall time
complexity of the new scheme is O(N)+ O(log2N) ~O(N)
to realize a permutation crosstalk-free in a RB(N)
network.

6. Conclusions

In this paper, we have proposed a new scheme for
crosstalk-free realization of permutations in
rearrangeable and self-routing optical MINs built on
vertical stacking. We have introduced the idea of
permutation class in the scheme to make the crosstalk-
free decomposition permutations more efficient. We
have shown that there is a large number of permutations
in a permutation class that share the same permutation
pattern and thus the same crosstalk-free decompositions.
By getting the crosstalk-free decomposition pattern of a
class based on the Euler-split technique and applying it
to all the permutations in the class, the crosstalk free
decompositions of these permutations can be made
efficient. Our new scheme has an average time
complexity of O(N) instead of O(NlogN) required
previously for realizing any crosstalk-free permutation on
{0,1,…, N-1} in this type of optical MINs.

References

[1] V.R.Chinni etal., “Crosstalk in a lossy directional coupler
switch,” J.Lightwave Technol., vol.13, no.7, pp.1530-1535,July
1995.

[2] H.S.Hinton, An introduction to Photonic Switching Fabrics,
New York: Plenum, 1993.
[3] G.R.Goke and G.J.Lipovski, “Banyan networks for
partitioning multiprocessor systems,” Proc.1st Annu. Symp.
Comp. Arch,, pp.21-28,1973.
[4] B.Kolman, R.C.Busby and S.Ross, Discrete Mathematical
Structures, 3nd Edition, Prentice Hall, 1996.
[5] C.Kruskal and M.Snir, “The performance of multistage
interconnection networks for multiprocessors,” IEEE Trans.
Commun., vol.COM-32, pp.1091-1098, Dec.1983.
[6] C.-T. Lea, “Muti-log2N networks and their applications in
high speed electronic and photonic switching systems,” IEEE
Trans. Commun., vol.38, pp.1740-1749, Oct. 1990.
[7] C.-T. Lea, “Crossover minimization in directional coupler-
based photonic switching systems,” IEEE Trans. Commun.,
vol.36, pp.355-363, Mar.1988.
[8] J.Patel, “Performance of processor-memory interconnections
for multiprocessors,” IEEE Trans. Comput., vol.C-30, pp.771-
780, Oct.1981.
[9] Xiaohong Jiang, Md. Mamun-ur-Rashid Khandker and
S.Horiguchi, “Nonblocking Optical MINs Under Crosstalk-free
Constraint”, Proceedings of the 2001 IEEE Workshop on High
Performance Switching and Routing, pp.307-311,May.2001,
Dallas, USA.
[10]M.M.Vaez and C.-T. Lea, “Strictly nonblocking
directional-coupler-based switching networks under crosstalk
constraint,” IEEE Trans. Commun., vol.48,no.2, pp.316-323,
Feb. 2000.
[11]M.M.Vaez and C.-T. Lea, “Space-wavelength tradeoff in
the design of nonblocking directional coupler based network
under crosstalk constraint,” J. Lightwave Technol., vol.16,
pp.1373-1379, Aug.1998.
[12]G.Maier and A.Pattavina, “Design of photonic
rearrangeable networks with zero first-order switching-element-
crosstalk, ” IEEE Trans. Commun., vol.49,no.7, pp.1268-1279,
July.2001.
[13]K.Padmanabhan and A.Netravali, “Dilated networks for
photonic switching,” IEEE Trans. Commun., vol.COM-35,
pp.1357-1365, Dec.1987.
[14]D.Li, “Elimination of crosstalk in directional coupler
switches,” Optical Quantum Electron., vol.25, no.4, pp.255-
260, Apr.1993.
[15] T.-S. Wong and C-T. Lea, “Crosstalk reduction through
wavelength assignment in WDM photonic switching networks,
” IEEE Trans. Commun., vol.49, no.7,pp.1280-1287, July.2001.
[16] M.M.Vaez and C.-T. Lea, “Wide-sense nonblocking
Banyan-type switching systems based on directional couplers, ”
IEEE J. Select. Areas Commun., vol.16, pp.1327-1332,
Sept.1998.
[17] Xiaohong Jiang, Md. Mamun-ur-Rashid Khandker, Hong
Shen and S.Horiguchi, “Realizing Crosstalk-free Permutation
in Vertically Stacked Optical Multistage Interconnection
Networks,” Submitted for publication.

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02)
1087-4089/02 $17.00 © 2002 IEEE

