370 research outputs found

    Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications

    Get PDF
    Diabetes leads to complications in select organ systems primarily by disrupting the vasculature of the target organs. These complications include both micro-(cardiomyopathy, retinopathy, nephropathy, and neuropathy) and macro-(atherosclerosis) angiopathies. Bone marrow angiopathy is also evident in both experimental models of the disease as well as in human diabetes. In addition to vascular disruption, bone loss and increased marrow adiposity have become hallmarks of the diabetic bone phenotype. Emerging evidence now implicates enhanced marrow adipogenesis and changes to cellular makeup of the marrow in a novel mechanistic link between various secondary complications of diabetes. In this review, we explore the mechanisms of enhanced marrow adipogenesis in diabetes and the link between changes to marrow cellular composition, and disruption and depletion of reparative stem cells

    Cellular Signaling and Potential New Treatment Targets in Diabetic Retinopathy

    Get PDF
    Dysfunction and death of microvascular cells and imbalance between the production and the degradation of extracellular matrix (ECM) proteins are a characteristic feature of diabetic retinopathy (DR). Glucose-induced biochemical alterations in the vascular endothelial cells may activate a cascade of signaling pathways leading to increased production of ECM proteins and cellular dysfunction/death. Chronic diabetes leads to the activation of a number of signaling proteins including protein kinase C, protein kinase B, and mitogen-activated protein kinases. These signaling cascades are activated in response to hyperglycemia-induced oxidative stress, polyol pathway, and advanced glycation end product formation among others. The aberrant signaling pathways ultimately lead to activation of transcription factors such as nuclear factor-κB and activating protein-1. The activity of these transcription factors is also regulated by epigenetic mechanisms through transcriptional coactivator p300. These complex signaling pathways may be involved in glucose-induced alterations of endothelial cell phenotype leading to the production of increased ECM proteins and vasoactive effector molecules causing functional and structural changes in the microvasculature. Understanding of such mechanistic pathways will help to develop future adjuvant therapies for diabetic retinopathy

    Propranolol inhibits growth of hemangioma-initiating cells but does not induce apoptosis

    Get PDF
    Background: Infantile hemangioma (IH) is the most common tumor of infancy. The first-line therapy for IH is propranolol, a nonselective β-adrenergic receptor antagonist. However, mechanisms for the therapeutic effect of propranolol and regrowth of IH following cessation of treatment in some cases are not clear. We have recently shown that IH arises from multipotent stem cells. Whether IH stem cells are responsive to propranolol and are selectively targeted is unknown, and this is the focus of this study. Methods: IH stem cells were exposed to propranolol and were assayed for cellular and molecular alterations. We used endothelial cells (ECs) as controls and bone marrow-derived mesenchymal progenitor cells (bm-MPCs) as normal stem/progenitor counterparts to determine selectivity. Results: Our results show that propranolol significantly reduced IH stem cell growth but failed to induce caspase-3 activation. Normal bm-MPCs and mature ECs showed maintained or increased caspase-3 activation and significantly reduced cyclin-D1 levels. We further show that IH stem cells may escape apoptosis by inducing antiapoptotic pathways. Conclusion: This study reveals that propranolol does not induce apoptosis in IH stem cells, which is in contrast with the result for ECs. Escape from apoptosis in IH stem cells may involve induction of antiapoptotic pathways. Copyright © 2014 International Pediatric Research Foundation, Inc

    Mechanisms of propranolol action in infantile hemangioma

    Get PDF
    Infantile hemangioma is a common tumor of infancy. Although most hemangiomas spontaneously regress, treatment is indicated based on complications, risk to organ development and function, and disfigurement. The serendipitous discovery of propranolol, a non-selective b-adrenergic receptor blocker, as an effective means to regress hemangiomas has made this a first-line therapy for hemangioma patients. Propranolol has shown remarkable response rates. There are, however, some adverse effects, which include changes in sleep, acrocyanosis, hypotension, and hypoglycemia. Over the last few years, researchers have focused on understanding the mechanisms by which propranolol causes hemangioma regression. This has entailed study of cultured vascular endothelial cells including endothelial cells isolated from hemangioma patients. In this article, we review recent studies offering potential mechanisms of how various cell types found in hemangioma may respond to propranolol

    Vascular stem cells in diabetic complications: evidence for a role in the pathogenesis and the therapeutic promise

    Get PDF
    Long standing diabetes leads to structural and functional alterations in both the micro- and the macro-vasculature. Vascular endothelial cells (ECs) are the primary target of the hyperglycemia-induced adverse effects. Vascular stem cells that give rise to endothelial progenitor cells (EPCs) and mesenchymal progenitor cells (MPCs) represent an attractive target for cell therapy for diabetic patients. A number of studies have reported EPC dysfunction as a novel participant in the culmination of the diabetic complications. The controversy behind the identity of EPCs and the similarity between these progenitor cells to hematopoietic cells has led to conflicting results. MPCs, on the other hand, have not been examined for a potential role in the pathogenesis of the complications. These multipotent cells, however, do show a therapeutic role. In this article, we summarize the vascular changes that occur in diabetic complications highlighting some of the common features, the key findings that illustrate an important role of vascular stem cells (VSCs) in the pathogenesis of chronic diabetic complications, and provide mechanisms by which these cells can be used for therapy. © 2012 Keats and Khan; licensee BioMed Central Ltd

    Vascular stem cells in diabetic complications: evidence for a role in the pathogenesis and the therapeutic promise

    Get PDF
    Long standing diabetes leads to structural and functional alterations in both the micro- and the macro-vasculature. Vascular endothelial cells (ECs) are the primary target of the hyperglycemia-induced adverse effects. Vascular stem cells that give rise to endothelial progenitor cells (EPCs) and mesenchymal progenitor cells (MPCs) represent an attractive target for cell therapy for diabetic patients. A number of studies have reported EPC dysfunction as a novel participant in the culmination of the diabetic complications. The controversy behind the identity of EPCs and the similarity between these progenitor cells to hematopoietic cells has led to conflicting results. MPCs, on the other hand, have not been examined for a potential role in the pathogenesis of the complications. These multipotent cells, however, do show a therapeutic role. In this article, we summarize the vascular changes that occur in diabetic complications highlighting some of the common features, the key findings that illustrate an important role of vascular stem cells (VSCs) in the pathogenesis of chronic diabetic complications, and provide mechanisms by which these cells can be used for therapy. © 2012 Keats and Khan; licensee BioMed Central Ltd

    Elevated T-box 2 in infantile hemangioma stem cells maintains an adipogenic differentiation-competent state

    Get PDF
    Infantile hemangioma is a benign vascular tumor that affects 4 to 10% of neonates. A unique feature of hemangiomas is the natural lifecycle, whereby the tumor rapidly grows and then spontaneously regresses to a fibrofatty residuum. We have shown that hemangiomas are derived from multipotential stem cells (hemSCs), which differentiate into endothelial cells during the early proliferating phase and into adipocytes during the later involutive phase. T-box 2 (TBX2) is a transcription factor involved in controlling cell-fate decisions, and is highly expressed during the proliferating phase of hemangioma development. We hypothesize that TBX2 expression would be high in hemSCs derived from human hemangiomas and inhibiting TBX2 would result in changes in hemSC differentiation potential. To test our hypothesis, we analyzed hemSCs for TBX2 mRNA and protein expression. We then used RNA interference and TBX2 overexpression to determine the effect of altering TBX2 levels on hemSC growth and differentiation. Our studies show that TBX2 is highly expressed in hemSCs compared with a panel of normal stem/progenitor cells and mature vascular cells. TBX2 knockdown completely abolished adipogenic differentiation of hemSCs without significantly altering growth. Furthermore, overexpression of TBX2 led to enhanced adipogenic differentiation ability possibly through induction of C/EBPβ. From these findings, we believe that TBX2 is active in hemSCs and that TBX2 maintains an adipogenic differentiation-competent state of hemSCs. These findings may be important in the development of better treatment options for hemangiomas to accelerate involution. © 2013 Landes Bioscience

    Study of the superconducting properties of the Bi-Ca-Sr-Cu-O system

    Get PDF
    High Temperature Superconductivity in the Bi-Ca-Sr-Cu-O System has been observed and has attracted considerable attention in 1988. The 80 K superconductivity phase has been identified to have a composition of Bi2CaSr2Cu2Ox, while the 110 K phase as reported in the literature has a possible composition of Bi2Ca2Sr2Cu3Ox. Researchers present here a study of the electrical properties of bulk samples of the slowly cooled and rapidly quenched 2:1:2:2 system. The samples used in this study were prepared from appropriate amounts of Bi2O3, CuO, SrCO3, CaCO3

    Differential effects of curcumin on vasoactive factors in the diabetic rat heart

    Get PDF
    BACKGROUND: Increased oxidative stress has been associated with the pathogenesis of chronic diabetic complications, including cardiomyopathy. Recent studies indicate that curcumin, a potent antioxidant, may be beneficial in preventing diabetes-induced oxidative stress and subsequent secondary complications. We have investigated the effects of curcumin on the nitric oxide (NO) pathway in cardiac tissues and cultured cells. METHODS: Streptozotocin-induced diabetic rats were treated with curcumin for a period of one month. Heart tissues were then analyzed for endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) mRNA expression. Oxidative protein and DNA damage were assessed by immunohistochemical analysis of nitrotyrosine and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Heart tissues were further subjected to endothelin-1 (ET-1) mRNA expression. In order to further characterize the effects of curcumin, we assayed microvascular endothelial cells (MVECs). Cultured MVECs, exposed either to glucose or glucose and varying concentrations of curcumin, were assessed for alterations of NOS expression and activation of nuclear factor-κB (NF-κB) and activating protein-1 (AP-1). Oxidative stress and ET-1 expression levels were also assayed. RESULTS: Our results indicate that one month of diabetes causes an upregulation of both eNOS and iNOS mRNA levels, and nitrotyrosine and 8-OHdG immunoreactivity in the heart. Treatment of diabetic rats with curcumin reduced eNOS and iNOS levels in association with reduced oxidative DNA and protein damage. Interestingly, curcumin further increased vasoconstrictor ET-1 in the heart. Exposure of MVECs to high glucose increased both eNOS and iNOS levels and oxidative stress. Curcumin prevented NOS alteration and oxidative stress in a dose-dependent manner which was mediated by nuclear factor-κB and activating protein-1. Exposure to curcumin also increased ET-1 levels in the MVECs. CONCLUSION: Our studies indicate the differential effects of curcumin in vasoactive factor expression in the heart and indicate the importance of tissue microenvironment in the treatment of diabetic complications
    corecore