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REVIEW Open Access

Vascular stem cells in diabetic complications:
evidence for a role in the pathogenesis and the
therapeutic promise
Emily C Keats1 and Zia A Khan1,2,3*

Abstract

Long standing diabetes leads to structural and functional alterations in both the micro- and the macro-vasculature.
Vascular endothelial cells (ECs) are the primary target of the hyperglycemia-induced adverse effects. Vascular stem
cells that give rise to endothelial progenitor cells (EPCs) and mesenchymal progenitor cells (MPCs) represent an
attractive target for cell therapy for diabetic patients. A number of studies have reported EPC dysfunction as a novel
participant in the culmination of the diabetic complications. The controversy behind the identity of EPCs and the
similarity between these progenitor cells to hematopoietic cells has led to conflicting results. MPCs, on the other
hand, have not been examined for a potential role in the pathogenesis of the complications. These multipotent
cells, however, do show a therapeutic role. In this article, we summarize the vascular changes that occur in diabetic
complications highlighting some of the common features, the key findings that illustrate an important role of
vascular stem cells (VSCs) in the pathogenesis of chronic diabetic complications, and provide mechanisms by which
these cells can be used for therapy.

Keywords: Diabetes, Diabetic complications, Angiopathy, Endothelial cells, Vasculogenesis, Angiogenesis, Stem cells,
Progenitors, Perivascular cells

Chronic diabetic complications
Diabetes is a chronic and debilitating metabolic disease
that presently has no cure. Currently, the total number of
people with diabetes is upwards of 221 million and in
North America alone, more than 10% of the population is
affected [1]. This amounts to a staggering economic
burden, estimated to reach $17 billion a year by 2020 in
Canada [2], and almost $116 billion in the United States
[3]. Although the incidence in North America is quite
alarming, close to 80% of diabetes-related deaths occur in
low- and middle- income countries due to poor
management of complications and lower standards of
healthcare [4]. Despite great efforts to combat this disease,
the World Health Organization projects that diabetes-
related deaths will more than double by the year 2030 [4].
The most important discovery in the diabetes field was

that of insulin in 1921. Exogenous insulin significantly

alleviated diabetic coma and ketoacidosis, and saved
millions. However, diabetic patients are still not morbidity-
free due to the chronic secondary complications that arise
in every diabetic patient. These long-term complications
manifest as micro- (retinopathy, neuropathy, nephropathy,
and cardiomyopathy) and macro- (atherosclerosis) vascu-
lar dysfunctions [5]. Although the clinical features of the
complications are quite varied, the underlying cause is an
aberration in the vasculature of the target organs. Two
major clinical trials paved the way to better understanding
the cause of the diabetic complications: the Diabetes
Control and Complications Trial (DCCT) and the United
Kingdom Perspective Diabetes Study (UKPDS), completed
in 1993 and 1997 respectively. In both trials, type 1 and
type 2 diabetic patients were put under intensive glycemic
control, and in both cases, there was delayed progression
and/or inhibition of the onset of diabetic complications
[6,7]. It is true that other factors, such as hyperlipidemia
and hyperinsulinemia, may contribute to the pathogenesis
of diabetic complications. The results of the clinical trials
and years of research in animal models of diabetes and
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cultured cells confirm the notion that hyperglycemia is the
primary cause of the micro- and macro-angiopathy we see
in long-term diabetes.

Molecular basis of the vascular dysfunction in
diabetic complications
Endothelial cells (ECs) are a critical component of the
vascular unit. These specialized cells form the inner
lining of blood vessels, sit on a basement membrane,
and are surrounded by supportive perivascular cells
(pericytes or smooth muscle cells) (Figure 1). ECs not
only function as a barrier- producing an interface be-
tween circulating blood and the perfused tissue- but
also play a prominent role in tissue functioning as
well as organogenesis. These cells are involved in
various important vascular processes such as regulat-
ing blood flow and pressure, permeability, blood fluid-
ity, the thrombotic/fibrinolytic balance, and leukocyte
traffic [8,9].
Due to their anatomical location in the blood vessel,

ECs are not surprisingly the first to encounter circulating
glucose. Glucose transporters (Gluts) facilitate the uptake
of glucose [10-12]. The predominant Glut in the vascular
ECs is Glut1 [13,14]. Although Gluts are typically
expressed in a tissue-specific manner, Glut1 is ubiquitously
expressed under normal growth conditions [15]. Unlike
many other glucose transporters, Glut1 activity and
expression level does not change with increased or
decreased plasma glucose levels. This indicates that hyper-
glycemia may have profound detrimental effects on vascu-
lar ECs specifically, as glucose uptake may not be actively
regulated [13,14]. There are certain conditions, however,
that may alter Glut1 expression. For example, hypoxia
increases Glut1 levels in ECs [16]. This may be one of the

mechanisms behind uncontrollable dysfunction of the ECs
in diabetic complications.
In vitro studies have shown that exposure to high levels

of glucose lead to biochemical alterations in mature
vascular ECs [17]. These alterations manifest as increased
production of extracellular matrix proteins, such as
collagen and fibronectin, increased production of the
procoagulant protein von Willebrand Factor (vWF), and
altered cellular activities [18-20]. In addition to a reduction
in proliferation and migration [21], a number of studies
have provided evidence that hyperglycemia can directly
promote EC apoptosis [22-24]. This apoptotic pathway is
believed to be activated by increased oxidative stress,
increased intracellular Ca2+, mitochondrial dysfunction,
changes in intracellular fatty acid metabolism, activation
of mitogen activated protein kinase (MAPK) signaling
pathways, and impaired phosphorylation/activation of
protein kinase B (also known as Akt) [25,26].
One of the earliest functional changes, which precedes

any structural change in the vasculature of the target
organs, is the impairment of endothelial-dependent
vasodilation [18]. This impairment arises because of two
inter-regulated mechanisms: decreased production of
vasodilators and increased production of vasoconstrictors.
Diminished levels of nitric oxide (NO) and increases in
endothelin-1 (ET-1), the most potent endogenous
vasoconstrictor, have been demonstrated in vascular ECs
cultured in high glucose [18]. We and others have shown
that the enzymes involved in NO production are upregu-
lated in the ECs upon glucose challenge [27]. However,
uncoupling of the enzymatic reaction and possible seques-
tration of NO by oxidative stress leads to significantly
reduced NO [18,28]. Another well-established pathway
leading to increased EC damage in diabetes is the oxidative

Figure 1 Schematic of large and small blood vessels. Large vessels contain a prominent elastic tissue and multiple layers of the contractile
cells (smooth muscle cells). Small capillaries may or may not have contractile cell (pericyte) coverage. Endothelial cells in capillaries sit on a thin
basement membrane.
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stress pathway. Hyperglycemic ECs produce reactive oxy-
gen species (ROS) such as hydroxyl radicals, superoxide
anions, and hydrogen peroxide [19]. The overproduction
of ROS may also be attributed to the activation of alternate
metabolic/signaling pathways such as the polyol pathway
and hexoseamine pathway, and signaling through protein
kinase C, AGE formation, and PARP activation [17,29,30]
(Figure 2). Each of these pathways may potentiate each
other, culminating in increased ET-1 activity, reduced NO
bioavailability, oxidative stress, and EC dysfunction.
Remarkably, the biochemical changes that we see in high
glucose-treated ECs are reminiscent of the chronic
complications that present in the diabetic patients.
We now know that altered ECs provide a backbone for

the long-term vascular dysfunctions that arise in the
diabetic patients (Figure 3). Changes in the structure and
function of ECs leads to subsequent aberration of entire
vascular networks, and tissues will begin to shows signs
of poor blood flow and ischemia [31]. Normally, an
adaptive response would be expected under these condi-
tions. There is a vascular response in diabetic patients,
although it varies depending on the organ system

involved. For example, the retina and kidneys typically
exhibit enhanced blood vessel formation, while this
process is impaired in the heart and lower limbs [31,32].
The selectivity in the target organ system in diabetes
suggests the importance of both the tissue microenviron-
ment and the intrinsic properties of the ECs [18].
Growth factors and extracellular matrix (ECM)

proteins are two major regulators of the balance that
exists between neovascularization and scar formation/
fibrosis in diabetic complications. Vascular endothelial
growth factor (VEGF) is an EC-specific mitogen that
promotes angiogenesis in a number of disease models. In
parallel with a lack of angiogenesis that occurs in the
heart in diabetes, a reduced expression of VEGF and its
receptors is reported in the myocardium [33]. This is in
direct contrast to elevated VEGF levels in the retina [34],
correlating with uncontrolled retinal neovascularization.

Figure 2 Mechanisms of glucose-induced oxidative stress in
ECs. Hyperglycemia leads to cell death by the overproduction of
ROS and impairment in the ROS neutralizing enzymes. Multiple
pathways may lead to ROS production. A consequence of activating
these oxidant pathways is the depletion of co-factors required by
the anti-oxidant enzyme systems. The net effect is an imbalance in
ROS production and ROS clearance [AGE= advanced glycation end
product; ATP= adenosine-5'-triphosphate; iNOS = inducible nitric
oxide synthase; LOX-1 = receptor for oxidized-low density lipoprotein;
NAD= nicotinamide adenine dinucleotide; NADPH= reduced NAD
phosphate; ox-LDL= oxidized-low density lipoprotein; PARP =poly
(ADP-ribose) polymerase; RAGE= receptor for AGE].

Figure 3 Mechanisms leading to vascular disruption in
diabetes. High glucose causes various biochemical and molecular
changes in the vascular ECs, resulting in functional and structural
alterations of the target organ vascular bed. Impaired vasoregulation
and loss of vessel integrity leads to reduced blood flow and
ischemia. In response, the target organ exhibits neovascularization
(diabetic retinopathy/nephropathy) or fibrosis (diabetic
cardiomyopathy/neuropathy) [AGE= advanced glycation end
product; BM=basement membrane; EC = endothelial cell;
ECM= extracellular matrix; EDV= endothelial-dependent vasodilation;
ET-1 = endothelin-1; MAPK=mitogen-activated protein kinase;
PKB =protein kinase B; PKC=protein kinase C].
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In addition to growth factors, the ECM regulates the
vascular cells and may contribute to the differential effects
of high glucose levels in diabetic complications. Binding of
EC surface integrins to the ECM proteins regulates cell
survival/apoptosis, growth, and cytoskeletal changes [35].
Therefore, angiogenesis is highly dependent on the inter-
actions between the cellular components of the vascular
unit and the surrounding scaffolding proteins. In fact,
ECM changes that are believed to promote neovasculariza-
tion during tumorigenesis are mimicked in retinal vascular
development, and include increases in fibronectin and
laminin [36]. Retinal basement membranes of diabetic
animals show a similar protein profile- with elevated
collagen IV, laminin and fibronectin as early as 8 weeks
following the onset of diabetes [37]. Along with ECM
protein heterogeneity, increased ECM deposition in the
heart may contribute to the impaired angiogenic response.
Cardiac fibroblasts, which are present in significant
numbers, may be responsible for this unregulated depos-
ition of ECM proteins through the action ET-1 which has
been shown in vitro to increase production of ECM
components by fibroblasts [38,39].
Regardless of the organ system, vascular ECs are the

primary mediators of hyperglycemic damage, and they
undergo functional and structural changes. Subsequent
impaired vasoregulation, increased permeability, ECM
expansion, and dysfunction of entire vascular networks
causes reduced blood flow to the target organ, setting
the stage for uncontrolled progression of the complica-
tions. To stop the progression of these complications
and to repair the damage, we would need to either
replace the damaged ECs or create brand new vascular
networks. Considering mounting evidence of stem/
progenitor cells in various tissues including the blood
vessel wall [40], we can speculate that the reason diabetic
patients exhibit impaired repair mechanisms is because
these stem/progenitor cells are also affected.

Vascular stem cells (VSCs): current evidence and
promise
Stem cells are defined by their ability to both self-renew
and differentiate into functionally mature cells [41]. The
potential of the cells is determined by the hierarchy and
specialization level. Stem cells have been identified in a
variety of post-embryonic tissues, including bone
marrow, blood, fat, and skin [42,43]. Finding these stem
cell populations presents the opportunity for non-
invasive tissue repair and tissue regeneration including
the vascular tissue. In terms of regenerating brand new
vascular networks (de novo formation), we must first find
a suitable cell source. Ideally, it would be one cell type
or a subpopulation that can produce both endothelial
cells and the supportive perivascular cells. The notion of
a specific vascular stem cell (VSC) able to produce

mature/functional cells of the blood vessels is slowly
gaining momentum. Several groups have demonstrated
the existence of a common vascular precursor cell in
both mouse and human studies. Kattman et al. used cell
tracing studies in mice and showed that cardiomyocytes
arise from a cell population expressing the VEGF recep-
tor-2 (VEGFR2/Flk1) [44], indicating that they develop
from a progenitor that also has vascular potential. They
followed up these studies with an embryonic stem cell
differentiation model, in which they isolated cardiovascu-
lar progenitors (brachyury+; VEGFR2+) from human
embryoid bodies (EBs) and successfully demonstrated
the potential for generating cardiomyocytes, endothelial
cells, and vascular smooth muscle cells [44]. Yamashita
and colleagues showed that VEGFR2+ cells, derived
from embryonic stem cells, could differentiate into both
endothelial and mural cells through differing culture
conditions [45]. These cells were also able to reproduce
the vascular organization process when placed in three-
dimensional culture systems [45]. Similarly, Ferreira
et al. demonstrated that vascular progenitors (CD34+)
isolated from EBs will give rise to endothelial and
smooth muscle-like cells, and have the ability to form
vascular networks when implanted in vivo [46].
The exact identity of the VSCs is still not clear. There

is ample evidence that these VSCs are found in the bone
marrow and circulation and are quite distinct from
hematopoietic stem cells. Selection of CD133+ cells from
the circulation purifies a population(s) of cells that under
different culture conditions, will produce lineage-
restricted endothelial progenitor cells (EPCs) and mesen-
chymal/mesodermal progenitor cells (MPCs) [47-51].
However, cells expressing pan hematopoietic marker
CD45 fail to yield endothelial cells [52-54]. It is unknown
thus far whether one or more stem cell subtypes reside
within this CD133+ population that are limited in their
capacity to produce endothelial and mesenchymal cell
types. More importantly, stem cell-derived EPCs and
MPCs form functional vascular networks [45,46,52].
Whether this is a feasible avenue for diabetic patients is
just recently being probed.

Endothelial progenitor cells (EPCs) and diabetic
complications
Progenitor, or precursor, cells are committed (lineage-
restricted) and highly proliferative derivatives of stem
cells. These cells may be capable of doubling their popu-
lation every 10–15 hours [55]. However, unlike fully
mature cells, progenitors may express markers of full
maturity in addition to select stem cell markers [55]. For
example, EPCs share markers of both stem and mature
endothelial lineages [56]. With the potential use of EPCs,
either clinically or as a biomarker, accurate identification
and reproducible classification is of great importance.
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Despite advances in research on this subject, a lack of
consensus remains on how EPCs should be defined.
Traditionally, EPCs have been identified as the spindle-
shaped or polymorphic cells that appear within 2–4 days
in culture after isolation of the mononuclear cell (MNC)
fraction from blood or bone marrow [57] (Figure 4). The
cells are characterized by Ulex europaeus agglutinin
binding and DiI-labeled acetylated-low density lipopro-
tein (LDL) uptake [58-60]. These two properties are
considered functional characteristics of ECs. However,
along with expressing some EC markers, these ‘short-
term’ EPC colonies also express monocyte-specific
marker CD14 and/or hematopoietic cell marker CD45.
Further, acetylated-LDL uptake is a known feature of
monocytes which was identified in 1979 [61]. Ulex
europaeus agglutinin is a lectin which binds to the EC
surface via fucose resides. Also, these fucose residues are
not specific to the ECs [62].
So what are EPCs? The single most important property

(or functional attribute) of EPCs is the ability to incorpor-
ate into blood vessels. In other words, EPCs are vasculo-
genic. In comparison, early EPCs may be considered
angiogenic as they may facilitate angiogenesis through
elaboration of growth factors. We and others have charac-
terized marker expression and cellular activities of
vasculogenic EPCs extensively. EPCs display properties of
both ECs and unipotent progenitor cells. EPCs differ from
mature ECs in CD133 expression (positive on EPCs but
readily lost upon culture) [48,49], proliferation/growth
kinetics (EPCs show lower population doubling time and

higher cumulative population doublings) [53,63], and
response to endostatin (EPCs are stimulated whereas
mature ECs are inhibited) [48]. Over time, EPCs resemble
mature ECs in terms of marker expression and all cellular
activities [48,52,53]. Much of the controversy behind
angiogenic and vasculogenic EPCs could be negated by
performing functional cellular activity tests (summarized
in Figure 5). These include assessing the expression of
endothelial-specific markers [48,52,53], activation by
cytokine challenge [48], and most importantly, the ability
of the cells to create blood vessels [52,53].
EPCs may be involved in vascular dysfunction in chronic

diabetic complications (reviewed in [64]). It has been
demonstrated that type 1 and type 2 diabetics maintain a
lower circulating number of EPCs when compared with
healthy subjects [56,65-67]. In two similar studies,
flow cytometric analysis was used to quantify EPCs
(CD34 +/VEGFR2+/CD31+) in diabetic patients. These
studies showed that EPCs were reduced by 44% and 40%,
respectively [65,68]. More recently, the number of circulat-
ing CD34+/VEGFR2+ cells were shown to correlate with
glycemic control in type 2 diabetic patients [69]. This
study also highlighted the negative relationship between
circulating CD34+/VEGFR2+ cells and arterial stiffness in
diabetic patients. Since these surface markers are not
exclusive to EPCs, the reduced number may be inclusive
of altered levels of hematopoietic stem/progenitor cells. In
fact, a fairly large study with 120 patients with ischemic
heart disease showed reduced levels of bone marrow-
derived CD34+/CD45+ cells which also correlated with

Figure 4 “Early” and “Late” EPCs. Schematic illustrating the two major types of cell colonies arising from blood and bone marrow mononuclear
cells. Short term colonies appear within 7 days of culture and are comprised of spindle shape or polymorphic cells. These early EPCs (also called
angiogenic EPCs) express a number of endothelial and hematopoietic markers but fail to proliferate in culture. Late colonies, appearing from
7–21 days, are comprised of epitheloid cells with high proliferative capacity. These late EPCs (also called vasculogenic EPCs) express all markers
of mature endothelial cells but lack hematopoietic marker expression.
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glycated hemoglobin HbA1c levels [70]. In vitro experi-
mental studies using early EPCs have also shown a lower
angiogenic ability [65], and impaired adherence to the
mature EC monolayer in diabetes [71,72]. Though less
work has been done on the late vasculogenic EPCs, we
have shown that high levels of glucose do not alter the cell
growth, proliferation, or migration of late EPCs [73,74].
The identical condition, however, increased ET receptor
expression in the mature ECs and enhanced glucose-
induced mature EC death. These findings show vasculo-
genic EPCs may be resistant to the adverse effects of high
glucose.
Though EPC number may be reduced in long-term

diabetes, there is still promise for their therapeutic
potential. If the cellular activity of the EPCs remains intact

in a diabetic setting, administration of ex vivo expanded
EPCs should essentially work to improve vascular
dysfunction. Not only has successful expansion of adult
blood-derived EPCs been shown in vitro, but their ability
to form fully functional vascular networks has also been
demonstrated in vivo [47,53]. It is important to note that
in order to form stable and durable networks, EPCs
require co-implantation with a source of perivascular cell.
MPCs, being derived from the same CD133+ fraction as
EPCs, may be a suitable candidate for this task.

Mesenchymal progenitor cells (MPCs) and diabetic
complications
MPCs are multipotent cells that are derived, along with
EPCs, from the CD133+ population of circulating cells

Figure 5 Characterization scheme for EPCs and MPCs. (a) EPCs are defined by a set of morphological and phenotypic characteristics. These
cells show properties of bone fide endothelial cells including expression and localization of CD31 and ve-cadherin on the cell membrane and von
willebrand factor in the Wieble Palade bodies. Vascular endothelial growth factor is a mitogen for endothelial cells and EPCs. Also, EPCs induce
adhesion molecules when challenged with cytokines, similar to mature endothelial cells. The progenitor properties include cloncal growth
potential and in vivo vasculogenesis. (b) MPCs are also defined by morphological and phenotypic characteristics of mature mesenchymal cells
(such as perivascular cells) and mesodermal progenitors. Similar to mature smooth muscle cells, MPCs express CD90, α-smooth muscle actin, and
calponin. Upon treatment with specific growth factors, such as plateled-derived growth factor and epidermal growth factor, MPCs proliferate and
also exhibit chemotaxis. The progenitor phenotype involves the ability of the cells to give rise to mesenchymal lineage-specific cells such as
adipocytes, osteocytes, and chondrocytes.
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[51]. MPCs can be isolated in large quantities from adult
human bone marrow [75]. In addition, MPCs have been
identified in liver [76], spleen [76], and adipose tissue
[77]. Like EPCs and other progenitor cell types, MPCs
share properties of both stem cells and mature cells.
MPCs can be characterized by a combination of pheno-
typic and functional properties, including expression of
cell surface markers, cell adhesion molecules, and differ-
entiation potential (Figure 5). Because there is not one
marker that is specific to MPCs, all parameters must be
taken into consideration when properly identifying this
cell population. Mesenchymal cells in culture typically
exude a spindle-like morphology [75], however, some
heterogeneity has been noted depending on the tissue
source and especially when arising from differing species.
MPCs are negative for both the endothelial marker
CD31 and the hematopoietic marker CD45 [52]. Analysis
of mRNA and/or protein can be used to demonstrate
expression of α-smooth muscle actin (SMA), calponin,
CD90, PDGFRβ, and NG2 [47,52]. Functionally, MPCs
differentiate into the mesenchymal lineage cells including
adipocytes, osteocytes, and chondrocytes [47,52,75].
Not much is known about a possible pathogenic role of

MPCs in diabetic complications. In terms of therapeutic
benefit, however, recent studies show improvement and
amelioration of complications, including cardiomyopathy,

nephropathy, neuropathy, and wound healing by MPCs.
Using a rat model of diabetic cardiomyopathy, MPCs
were administered intravenously and shown to attenuate
cardiac remodeling and improve myocardial function
through a marked increase in the activity of matrix metal-
loproteinase (MMP)-2 and decrease in MMP-9[78]. In
addition, reduced levels of VEGF, insulin-like growth
factor-1 (IGF-1), adrenomedullin (AM), and hepatocyte
growth factor (HGF) were found [78]. The MPCs differ-
entiated into both cardiomyocytes and vascular ECs,
improving myocardial perfusion and regeneration in the
diabetic heart [78]. MPCs have also successfully improved
diabetic nephropathy in mice. After systemic injection,
the precursor cells were shown to engraft in the damaged
kidneys and differentiate into renal cells, improving renal
function and the regeneration of glomerular structures
[79,80]. Furthermore, MPCs improve diabetic polyneur-
opathy through increased secretion of angiogenic
cytokines such as bFGF and VEGF when injected intra-
muscularly [81]. In a model of skin wound healing,
administration of MPCs in streptozotocin-induced
diabetic rats completely normalized the delayed wound
closure time [82]. This effect was mediated, in part,
through reduced number of infiltrating CD45+ cells into
the wounds. This study involved ‘normal’ MPCs (i.e. cells
isolated from non-diabetic rats) and the question remains

Figure 6 The potential of VSCs for therapeutic use in diabetics. A schematic of our working hypothesis showing that CD133+ VSCs are
non-invasively isolated from diabetic patients and differentiated into endothelial and mesenchymal lineages by defined media. EPCs and MPCs are
then expanded ex vivo and re-implanted in the patients to repair the damage and restore vascular homeostasis [middle box shows the
immunophenotype of VSCs; VEGF= vascular endothelial growth factor (obligatory factor for endothelial lineage)].
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whether diabetes causes alteration of the functional
properties of MPCs. This is a new field of research with
not much known. However, a recent study showed that
AGEs (Figure 2) may increase the generation of reactive
oxygen species and reduce the proliferation and
migration of MPCs [83]. Whether this plays a role in
human diabetes or in animal models of diabetic compli-
cations, requires further studies.
Given the advantages that MPCs have over other cell

types (differentiation potential and capability for regulation
of the immune response), they are likely to be good
therapeutic candidates in diabetic complications. The
recent studies in animal models do show promise. Several
studies have also reported that treatment with MPCs can
enhance angiogenesis through paracrine effects [84-86].
The paracrine role may involve the release of angiogenic
factors to facilitate EPC homing and the restructuring of
vascular networks [52].

Concluding remarks
Examining the long-term effects of diabetes has led to
implication of vascular ECs as the primary target of
hyperglycemia-induced damage. Subsequently, entire
vascular networks in target organs become dysfunctional
and provide the foundation for the complications we see
in the patients. Experimental evidence shows that stem/
progenitor cells isolated from diabetic mice are able to
restore vascular homeostasis [87,88]. This suggests that
the main stem cell deficit in diabetes is reduced number.
This reduction may take place somewhere between the
bone marrow and circulation. If we can find a way utilize
these two cells types to repair vascular damage and
restore blood vessel functioning, there is hope that the
chronic complications can be attenuated (Figure 6).
The success of therapeutic vascularization will rely on

many factors, one of which being the ability of engineered
blood vessels to form stable and functional anastomoses
with the host vasculature. Neovascularization has been
successfully shown thus far using human umbilical vein
endothelial cells (HUVECs), as well as human microvascu-
lar endothelial cells (HDMECs) [89,90]. However, there
are limitations to the clinical use of these particular EC
types because of the lower yield. Considering the ease with
which EPCs can be isolated from adult peripheral blood,
an opportunity is presented to obtain these cells non-
invasively and in large enough quantities for expansion
ex vivo. Following expansion, the cells can be implanted
into the diabetic patient to restore vascular homeostasis. It
has previously been shown that adult and cord blood-
derived EPCs have the ability to form functional vascular
networks in vivo [53,91]. Importantly, this requires co-
implantation of perivascular cells in order to maintain
stable, functional networks. MPCs are an ideal candidate
for a viable source of perivascular cell because, like EPCs,

they can be isolated with minimal complications from sites
such as bone marrow [75] and even adult blood [92]. We
have previously shown the success of subcutaneous co-
implantation of EPCs and MPCs into the backs of athymic
nu/nu mice, resulting in the creation of human microves-
sels that formed functional anastomoses with the host
vasculature [52].
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