44,306 research outputs found
Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks
With increase in ageing population, health care market keeps growing. There
is a need for monitoring of health issues. Wireless Body Area Network (WBAN)
consists of wireless sensors attached on or inside human body for monitoring
vital health related problems e.g, Electro Cardiogram (ECG), Electro
Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening
situations, timely sending of data is essential. For data to reach health care
center, there must be a proper way of sending data through reliable connection
and with minimum delay. In this paper transmission delay of different paths,
through which data is sent from sensor to health care center over heterogeneous
multi-hop wireless channel is analyzed. Data of medical related diseases is
sent through three different paths. In all three paths, data from sensors first
reaches ZigBee, which is the common link in all three paths. Wireless Local
Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX),
Universal Mobile Telecommunication System (UMTS) are connected with ZigBee.
Each network (WLAN, WiMAX, UMTS) is setup according to environmental
conditions, suitability of device and availability of structure for that
device. Data from these networks is sent to IP-Cloud, which is further
connected to health care center. Delay of data reaching each device is
calculated and represented graphically. Main aim of this paper is to calculate
delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240
Particle Tracking Studies Using Dynamical Map Created from Finite Element Solution of the EMMA Cell
The unconventional size and the possibility of transverse displacement of the magnets in the EMMA non-scaling FFAG motivates a careful study of particle behavior within the EMMA ring. The magnetic field map of the doublet cell is computed using a Finite Element Method solver; particle motion through the field can then be found by numerical integration, using (for example) OPERA, or ZGOUBI. However, by obtaining an analytical description of the magnetic field (by fitting a Fourier-Bessel series to the numerical data) and using a differential algebra code, such as COSY, to integrate the equations of motion, it is possible to produce a dynamical map in Taylor form. This has the advantage that, after once computing the dynamical map, multi-turn tracking is far more efficient than repeatedly performing numerical integrations. Also, the dynamical map is smaller (in terms of computer memory) than the full magnetic field map; this allows different configurations of the lattice, in terms of magnet positions, to be represented very easily using a set of dynamical maps, with interpolation between the coefficients in different maps*
Observation of B+ ---> a(1)+(1260) K0 and B0 ---> a(1)-(1260) K+
We present branching fraction measurements of the decays B^{+} -> a1(1260)^{+} K^{0} and B^{0} to a1(1260)^{-} K^{+} with a1(1260)^{+} -> pi^{-} pi^{+} pi^{+}. The data sample corresponds to 383 million B B-bar pairs produced in e^{+}e^{-} annihilation through the Y(4S) resonance. We measure the products of the branching fractions:
B(B^{+}-> a1(1260)^{+} K^{0})B(a1(1260)^{+} -> pi^{-} pi^{+} pi^{+}) = (17.4 +/- 2.5 +/- 2.2) 10^{-6}
B(B^{0}-> a1(1260)^{-} K^{+})B(a1(1260)^{-} -> pi^{+} pi^{-} pi^{-}) = (8.2 +/- 1.5 +/- 1.2) 10^{-6}.
We also measure the charge asymmetries A_{ch}(B^{+} -> a1(1260)^{+} K^{0})= 0.12 +/- 0.11 +/- 0.02 and A_{ch}(B^{0} -> a1(1260)^{-} K^{+})= -0.16 +/- 0.12 +/- 0.01. The first uncertainty quoted is statistical and the second is systematic
Folding model analysis of proton scattering from O nuclei
The elastic and inelastic proton scattering on O nuclei are
studied in a folding model formalism of nucleon-nucleus optical potential and
inelastic form factor. The DDM3Y effective interaction is used and the ground
state densities are obtained in continuum Skyrme-HFB approach. A
semi-microscopic approach of collective form factors is done to extract the
deformation parameters from inelastic scattering analysis while the microscopic
approach uses the continuum QRPA form factors. Implications of the values of
the deformation parameters, neutron and proton transition moments for the
nuclei are discussed. The p-analyzing powers on O nuclei are also
predicted in the same framework.Comment: 8 pages, 5 figure
Search for CP violation in the decays D0 ---> K- K+ and D0 ---> pi- pi+
We measure CP-violating asymmetries of neutral charmed mesons in the modes D0 --> K- K+ and D0 --> pi- pi+ with the highest precision to date by using D0 --> K- pi+ decays to correct detector asymmetries. An analysis of 385.8 fb-1 of data collected with the BaBar detector yields values of aCP(KK) = (0.00 +/- 0.34 (stat.) +/- 0.13 (syst.))% and aCP(pipi) = (-0.24 +/- 0.52 (stat.) +/- 0.22 (syst.))%, which agree with Standard Model prediction
Causes, Effects, and Remedies in Conflict Management
While workplace conflicts have been widely studied in the literature, this researchprovides a holistic view of the causes and effects of such, and how managers or amanagement can resolve the conflicts among their teams and organization througha detailed, multidimensional framework carried out on one of the biggest textilefirms of Pakistan. With an initial sample of 145 respondents, 37 questionnaireswere dropped because of invalid and incomplete answers; therefore, the studywas carried out on 108 respondents. Conflicts are a part of human nature, butmanagement should play an important role in dealing with these issues, as therecan be enormous chances of conflicts due to a diverse workforce. Conflict alsoresults in poor work performance and low productivity; therefore, it’s suggestedto create teams or groups which may encourage a competitive culture in theorganization. Additionally, a few remedies are identified, which may resolve someissues; managers must look at those techniques for a better culture. 
- …