104 research outputs found

    Assessing Water Consumption of Major Crops in the Command Area of Malwah Distributary, Shaheed Benazirabad, Sindh.

    Get PDF
    Soil and water are vital natural resources on which agriculture sector growth and village livelihood depend and having the proper knowledge of the Soil, Plant, and water relationship are extremely important to achieve sustainable agricultural productivity. Pakistan has entered the 21st century with the rising challenge to meet food and fiber requirements for its population for domestic consumption and export. Without having appropriate knowledge about the intense water need of plants, most of the agricultural land in Pakistan is still being irrigated by conventional methods, which in turn produces so many problems and reduces the agricultural productivity putting extra stress on the country’s economy, so to avoid these issues, it is extremely necessary to provide the required quantity of water to plant, which will only be possible by consideration and accurate estimation of Evapotranspiration of plant so to enhance awareness and practice of water-saving agriculture in Pakistan to increase the agricultural commodities. In this study, estimation of Actual Evapotranspiration ( ETa ) of Malwah Distributary located in Shaheed Benazirbad, Sindh was selected from Command area of Rohri Canal, ET of four different crops; Cotton, Fallow, Rice and Sugarcane for the period of Rabi 2019-2020 and Kharif 2020 was estimated by using satellite-based evapotranspiration mapping tool namely METRIC REFLUX. The actual ET for each season was obtained using the Reference ET fraction (ETrf) of satellite data and reference ET(ETr) obtained from the literature. The classified crop mask was obtained using maximum likelihood classification on bands 8,4, and 3 of sentinel-2 images of the year 2020. The overall accuracy obtained is 93% with a kappa coefficient 0.921841. The average Actual Evapotranspiration of different crops namely, banana, cotton, rice, and sugarcane were found to be 1527.2 mm, 536.6 mm, 386.80 mm, and 814.02 m

    Principles of time-frequency feature extraction for change detection in non-stationary signals: applications to newborn EEG abnormality detection

    Get PDF
    This paper considers the general problem of detecting change in non-stationary signals using features observed in the time-frequency (t,f) domain, obtained using a class of quadratic time-frequency distributions (QTFDs). The focus of this study is to propose a methodology to define new (t,f) features by extending time-only and frequency-only features to the joint (t,f) domain for detecting changes in non-stationary signals. The (t,f) features are used as a representative subset characterizing the status of the observed non-stationary signal. Change in the signal is then reflected as a change in the (t,f) features. This (t,f) approach is applied to the problem of detecting abnormal brain activity in newborns (e.g. seizure) using measurements of the EEG for diagnosis and prognosis. In addition, a pre-processing stage for detecting artifacts in EEG signals for signal enhancement is studied and implemented separately. Overall results indicate that, in general, the (t,f) approach results in an improved performance in detecting artifacts and seizures in newborn EEG signals as compared to time-only or frequency-only features

    Parametric analysis of wax printing technique for fabricating microfluidic paper-based analytic devices (µPAD) for milk adulteration analysis

    Get PDF
    Accurate prediction of hydrophobic–hydrophilic channel barriers is essential in the fabrication of paper-based microfluidic devices. This research presents a detailed parametric analysis of wax printing technique for fabricating µPADs. Utilizing commonly used Grade 1 filter paper, experimental results show that the wax spreading in the paper porous structure depends on the initially deposited wax line thickness, a threshold melting temperature and melting time. Initial width of the printed line has a linear relationship with the final width of the barrier; however, a less pronounced effect of temperature was observed. Based on the spreading behavior of the molten wax at different parameters, a generalized regression model has been developed and validated experimentally. The developed model accurately predicts wax spreading in Whatman filter paper: a non-uniform distribution of pores and fibers. Finally, tests were carried out for calorimetric detection of commonly used adulterants present in milk samples

    Traffic flow prediction : an intelligent scheme for forecasting traffic flow using air pollution data in smart cities with bagging ensemble

    Get PDF
    Traffic flow prediction is the most critical part of any traffic management system in a smart city. It can help a driver to pick the most optimized way to their target destination. Air pollution data are often connected with traffic congestion and there exists plenty of research on the connection between air pollution and traffic congestion using different machine learning approaches. A scheme for efficiently predicting traffic flow using ensemble techniques such as bagging and air pollution has not yet been introduced. Therefore, there is a need for a more accurate traffic flow prediction system for the smart cities. The aim of this research is to forecast traffic flow using pollution data. The contribution is twofold: Firstly, a comparison has been made using different simple regression techniques to find out the best-performing model. Secondly, bagging and stacking ensemble techniques have been used to find out the most accurate model of the two comparisons. The results show that the K-Nearest Neighbors (KNN) bagging ensemble provides far better results than all the other regression models used in this study. The experimental results show that the KNN bagging ensemble model reduces the error rate in predicting the traffic congestion by more than 30%

    Synthesis of nitrogen-doped Ceria nanoparticles in deep eutectic solvent for the degradation of sulfamethaxazole under solar irradiation and additional antibacterial activities

    Get PDF
    © 2020 Elsevier B.V. In this study, highly crystalline, mesoporous, small sized, stable, and efficient nitrogen-doped (N-doped) Ceria nanoparticles were synthesized using deep eutectic solvent (DES) and used for the photocatalytic degradation of sulfamethaxazole (SMX), a widely used human medication and emerging water contaminant. The N-doped Ceria resulted in 96% removal of SMX versus 59% by Ceria under solar irradiation at 150 min time using [SMX]0 = 10 mg/L and [Ceria]0 = [N-doped Ceria]0 = 0.5 g/L. The solar irradiation of the photocatalysts produced [rad]OH which was proved with electron spin resonance (ESR) spectroscopy and radical scavenger studies and the resulting [rad]OH caused the degradation of SMX. The [rad]OH showed high second-order rate constant with SMX, e.g., 4.9 × 109 M−1 s−1. The photocatalytic degradation of SMX was influenced by pH, concentrations of SMX and photocatalysts, inorganic anions, and natural organic matter. The kinetics of the photocatalytic degradation of SMX was found to be pseudo-first-order. The SMX degradation resulted into several products which were identified by UPLC-MS/MS and the resulting products were used to establish degradation pathways of SMX. The synthesized Ceria and N-doped Ceria also showed good antimicrobial activities towards Staphylococcus aureus and Escherichia coli. The treatment of SMX showed high reusability of N-doped Ceria, low leaching of cerium ions into reaction solution, and high decline in toxicity of SMX which suggests high potential of the synthesized nanoparticles towards SMX degradation

    Occurrence of various viruses and recent evidence of SARS-CoV-2 in wastewater systems

    Get PDF
    Viruses are omnipresent and persistent in wastewater, which poses a risk to human health. In this review, we summarize the different qualitative and quantitative methods for virus analysis in wastewater and systematically discuss the spatial distribution and temporal patterns of various viruses (i.e., enteric viruses, Caliciviridae (Noroviruses (NoVs)), Picornaviridae (Enteroviruses (EVs)), Hepatitis A virus (HAV)), and Adenoviridae (Adenoviruses (AdVs))) in wastewater systems. Then we critically review recent SARS-CoV-2 studies to understand the ongoing COVID-19 pandemic through wastewater surveillance. SARS-CoV-2 genetic material has been detected in wastewater from France, the Netherlands, Australia, Italy, Japan, Spain, Turkey, India, Pakistan, China, and the USA. We then discuss the utility of wastewater-based epidemiology (WBE) to estimate the occurrence, distribution, and genetic diversity of these viruses and generate human health risk assessment. Finally, we not only promote the prevention of viral infectious disease transmission through wastewater but also highlight the potential use of WBE as an early warning system for public health assessment

    Prospective elective neurosurgical theater utilization audit in Pakistan: problems in a public tertiary care hospital and proposed solutions from lower-middle-income country

    Get PDF
    Background: In lower-middle-income countries such as Pakistan, public hospitals provide free healthcare but suffer from poor management and misgovernance, negatively impacting service provision. One aspect of this is operating theater time (OTT) utilization. In a 1,600-bed hospital with a 22 million catchment population, we noticed significant delays and inadequate OTT efficiency at the neurosurgery department of Jinnah Hospital, Lahore, Punjab, Pakistan. This audit aimed to analyze the neurosurgical OTT utilization, identify delays, and highlight managerial deficiencies and areas for improvement while comparing our workflow with contemporary international literature. Materials and Methods: We prospectively audited OTT utilization at the neurosurgical department. All elective surgeries from January to April 2021 were included to identify delays concerning patient transfer, anesthesia team arrival, preparation and intubation time, operative time, and anesthesia extubation time. Results: Fifty-six per cent of OTT was utilized operating. Sources of delay included the delayed arrival of anesthesia team (4.7%) and the delay in transferring patients to OT (9.7%). Anesthesia intubation and preparation time accounted for 23% of OT utilization and was significantly longer than the comparable international studies. Extubation time accounted for 5.7% of OT utilization. The issues surrounding transfer delays and prolonged anesthesia time were discussed, with strategies to address them developed with close vital input from our anesthesia colleagues and ward staff. Conclusion: Gross delays relatively simple in nature were identified due to poor management and less than ideal interspecialty coordination. Most delays were avoidable and can be addressed by proper planning, optimization of patient transfer and resources, and, most importantly, improved communication between surgeons, anesthetists, and ward staff. This can ensure optimal use of theater time and benefit all specialties, including ancillary staff, and, most importantly, the patient. A reaudit is warranted to assess the impact of interventions on OTT utilization
    • …
    corecore